Q梅西纳-帕拉泽克多项式定义如下:
P n ( x ; a | q ) = a − n e i n ϕ {\displaystyle P_{n}(x;a|q)=a^{-n}e^{in\phi }} a 2 ; q n ( q ; q ) n {\displaystyle {\frac {a^{2};q_{n}}{(q;q)_{n}}}} 3 Φ 2 ( q − n , a e i ( θ + 2 ϕ ) , a e − i θ ; a 2 , 0 | q ; q ) {\displaystyle _{3}\Phi _{2}(q^{-}n,ae^{i(\theta +2\phi )},ae^{-i\theta };a^{2},0|q;q)}
连续q哈恩多项式→Q梅西纳-帕拉泽克多项式
p n ( c o s ( θ + ϕ ) ; a , 0 , 0 , a ; q ) ( q ; q ) n = P n ( c o s ( θ + ϕ ) ; a | q ) {\displaystyle {\frac {p_{n}(cos(\theta +\phi );a,0,0,a;q)}{(q;q)_{n}}}=P_{n}(cos(\theta +\phi );a|q)}
Q梅西纳-帕拉泽克多项式→连续q超球面多项式
P n ( c o s ϕ ; β | q ) = C n ( c o s ϕ ) ; β | q ) {\displaystyle P_{n}(cos\phi ;\beta |q)=C_{n}(cos\phi );\beta |q)}
Q梅西纳-帕拉泽克多项式→连续q拉盖尔多项式
P n ( c o s ( θ + ϕ ) ; q α / 2 + 1 / 2 | q ) = {\displaystyle P_{n}(cos(\theta +\phi );q^{\alpha /2+1/2}|q)=} q ( − α / 2 − 1 / 4 ) ∗ n ∗ P n ( α ) ( c o s θ | q ) {\displaystyle q^{(-\alpha /2-1/4)*n}*P_{n}^{(}\alpha )(cos\theta |q)}