量子谐振子

✍ dations ◷ 2025-05-19 23:03:13 #量子力学,量子力学模型

在量子力学里,量子谐振子(英语:quantum harmonic oscillator)是经典谐振子的延伸。其为量子力学中数个重要的模型系统中的一者,因为一任意势在稳定平衡点附近可以用谐振子势来近似。此外,其也是少数几个存在简单解析解的量子系统。量子谐振子可用来近似描述分子振动。

在一维谐振子问题中,一个质量为的粒子,受到一位势 V ( x ) = 1 2 m ω 2 x 2 {\displaystyle V(x)={\frac {1}{2}}m\omega ^{2}x^{2}} 为位置算符,而为动量算符 ( p = i d d x ) {\displaystyle \left(p=-i\hbar {d \over dx}\right)} = 0到5)如右图。函数 H n {\displaystyle H_{n}} 。相应的能级为

值得注意的是能谱,理由有三。首先,能量被“量子化”(quantized),而只能有离散的值——即 ω {\displaystyle \hbar \omega } = 0)不为零,而是 ω / 2 {\displaystyle \hbar \omega /2} 与其伴随算符(adjoint)†:

算符并非厄米算符(Hermitian),以其与伴随算符†并不相同。

算符与†有如下性质:

在推导†形式的过程中,已用到算符与(代表可观测量)为厄米算符这样的事实。这些可观测量算符可以被表示为阶梯算符的线性组合:

与算符遵守下面的等式,称之为正则对易关系:

方程中的方括号是常用的标记机器,称为交换子、交换算符或对易算符,其定义为

利用上面关系,可以证明如下等式:

现在,让 | ψ E {\displaystyle \left|\psi _{E}\right\rangle } 的能量本征态。任何右括矢量(ket)与自身的内积必须是非负值,因此

将†以哈密顿算符表示:

因此 E ω / 2 {\displaystyle E\geq \hbar \omega /2} = 0)。

利用上面等式,可以指出及†与的对易关系:

因此要是( a | ψ E {\displaystyle a\left|\psi _{E}\right\rangle } 作用在能量为的本征态,而产生出——还多了一个常数乘积——另一个能量为 E ω {\displaystyle E-\hbar \omega } †作用在能量为的本征态,产生出另一个能量为 E + ω {\displaystyle E+\hbar \omega } 称作降算符而†称作升算符。两者合称阶梯算符。在量子场论中,与†也分别称作消灭算符与创生算符,以其分别摧毁与创造粒子——对应于能量量子。

给定任何能量本征态,可以拿降算符作用在其上,产生了另一个能量少了 ω {\displaystyle \hbar \omega } = −∞。不过这样就就与早先的要求 E ω / 2 {\displaystyle E\geq \hbar \omega /2} 来指定的。在 N {\displaystyle N} 1, ..., 。这些算符之间的正则对易关系为

系统的哈密顿算符为

从这个哈密顿量的形式,可以发觉, N {\displaystyle N} 维谐振子明确地可比拟为 N {\displaystyle N} 个质量相同,弹性常数相同,独立的一维谐振子。在这案例里,变数 x 1 , x 2 , , x N {\displaystyle x_{1},\,x_{2},\,\dots ,\,x_{N}} N {\displaystyle N} 个粒子的位置坐标。这是反平方连心位势的一个优良的特性,允许位势被分离为 N {\displaystyle N} 个项目,每一个项目只跟一个位置坐标有关。

这观察使得问题的解答变的相当简单。对于一个集合的量子数 { n } {\displaystyle \{n\}} ,一个 N {\displaystyle N} 维谐振子的能量本征函数 x | ψ { n } {\displaystyle \langle \mathbf {x} |\psi _{\{n\}}\rangle } 等于 N {\displaystyle N} 个一维本征函数 x i | ψ n i {\displaystyle \langle x_{i}|\psi _{n_{i}}\rangle } 的乘积:

采用阶梯算符方法,定义 N {\displaystyle N} 组阶梯算符,

类似前面所述的一维谐振子案例,可以证明每一个 a i {\displaystyle a_{i}} a i {\displaystyle a_{i}^{\dagger }} 算符将能量分别降低或升高 ω {\displaystyle \hbar \omega } 。哈密顿量是

这量子系统的能级 E {\displaystyle E}

其中,正整数 n i {\displaystyle n_{i}} | ψ n i {\displaystyle |\psi _{n_{i}}\rangle } 的量子数。

如同一维案例,能量是量子化的。 N {\displaystyle N} 维基态能级是一维基态能级的 N {\displaystyle N} 倍。只有一点不同,在一维案例里,每一个能级对应于一个单独的量子态。在 N {\displaystyle N} 维案例里,除了底态能级以外,每一个能级都是简并的,都对应于多个量子态。

简并度可以很容易地计算出来。例如,思考三维案例,设定 n = n 1 + n 2 + n 3 {\displaystyle n=n_{1}+n_{2}+n_{3}} 。每一个 n {\displaystyle n} 相同的量子态,都会拥有相同的能量。给予 n {\displaystyle n} ,首先选择一个 n 1 {\displaystyle n_{1}} 。那么, n 2 + n 3 = n n 1 {\displaystyle n_{2}+n_{3}=n-n_{1}} ,有 n n 1 + 1 {\displaystyle n-n_{1}+1} 个值,从 0 {\displaystyle 0} n n 1 {\displaystyle n-n_{1}} ,可以选择为 n 2 {\displaystyle n_{2}} 的值。 n 3 {\displaystyle n_{3}} 的值自动的设定为 n n 1 n 2 {\displaystyle n-n_{1}-n_{2}} 。因此,简并度是

对于 N {\displaystyle N} 维案例,

球对称的三维均向谐振子可以用分离变数法来求解。这方法类似于氢原子问题里的方法,只有球对称位势不一样:

其中, μ {\displaystyle \mu } 是这问题的质量。由于 m {\displaystyle m} 会被用来标记磁量子数,所以,用 μ {\displaystyle \mu } 来标记质量。

这问题的薛定谔方程为

薛定谔方程的全部解答写为

其中,

能量本征值是

能量通常可以用一个量子数 n {\displaystyle n} 来描述:

由于 k {\displaystyle k} 是个正整数,假若 n {\displaystyle n} 是偶数,那么,角量子数也是偶数:

假若 n {\displaystyle n} 是奇数,那么,角量子数也是奇数:

磁量子数 m {\displaystyle m} 满足不等式

对于每一个 n {\displaystyle n} l {\displaystyle l} ,存在 2 l + 1 {\displaystyle 2l+1} 个不同的量子态。每一个量子态都有不同的磁量子数 m {\displaystyle m} 。因此, n {\displaystyle n} 的兼并度是

其中,总和的指数 l {\displaystyle l} 的初始值是 i = n   m o d   2 {\displaystyle i=n\ mod\ 2}

这结果与先前的方程相同。

设想 N {\displaystyle N} 个相同质量的质点,以弹簧连结为一条一维的线形链条。标记每一个质点的离开其平衡点的位置为 x 1 , x 2 , , x N {\displaystyle x_{1},\,x_{2},\,\dots ,\,x_{N}} (也就是说,假若一个质点 k {\displaystyle k} 位于其平衡点,则 x k = 0 {\displaystyle x_{k}=0} )。整个系统的哈密顿量是

其中, x 0 = 0 {\displaystyle x_{0}=0}

这个问题可以用坐标变换来变换成一组独立的谐振子,每一个独立的谐振子对应于一个独特的晶格集体波震动。这些波震动表现出类似粒子般的性质,称为声子。许多固体的离子晶格都会产生声子。在固体物理学里,这方面的理论对于许多现象的研究与了解是非常重要的。

相关

  • 1067年
  • 性腺生殖腺是人和动物产生生殖细胞和分泌性激素的器官。低等动物又称“生殖巢”,即精巢和卵巢的总称;高等动物雄性的生殖腺是睾丸,雌性的生殖腺是卵巢。人类在青春期后睾丸产生精子
  • Mars“Mars”的英文意思为火星。“Mars”或“MARS”也可以指:
  • 谢司叛乱美国谢司起义(英文:Shays' Rebellion)或译为谢司暴动,是美国马萨诸塞州中西部地区在1786年—1787年发生的一场起义。因为起义领导者是丹尼尔·谢司,是前美国独立战争军官,因此这场
  • 2018年4月逝世人物列表2018年4月逝世人物列表,是用于汇总2018年4月期间逝世人物的列表。
  • 2001年12月14日日食2001年12月14日日食是一次日环食,发生于2001年12月14日(东半球为12月15日)。新月当天(即朔日),地球上观测到月球和太阳的角距离极小,此时月球如果恰好在月球交点附近,穿过太阳和地球
  • 魏斯塞峰坐标:46°50′48″N 10°43′02″E / 46.84667°N 10.71722°E / 46.84667; 10.71722魏斯塞峰(德语:Weißseespitze),是中欧的山峰,位于奥地利和意大利接壤的边境,属于奥兹塔尔阿尔
  • 散弹块散弹块(Shotgun slug)或称一粒弹、一块弹、独头弹、重头弹,是给散弹枪发射的铅制的抛射物(弹头),本身可能有着预先制好的膛线,通常用来猎杀大型猎物。第一种有效的散弹块是由Wilhel
  • 李棠阶李棠阶(1798年-1865年),字树南,号文园,又号强斋,河南河内县(今温县)人,晚清大臣,著名理学家。道光二年(1822年)进士,历任翰林院庶吉士、编修、侍读、太常寺少卿、大理寺卿、礼部侍郎、左都
  • 川口能活川口能活(1975年8月15日-),已退役日本足球运动员,前日本国家足球队成员,司职守门员。1975年8月15日,川口能活出生在日本的足球之乡静冈县。除了在6-10岁的几年间受漫画《足球小将》