多格骨牌

✍ dations ◷ 2025-11-14 16:11:08 #数学中未解决的问题,多连块,骨牌,几何形状,离散几何

多格骨牌(Polyomino),又称多连块、多连方、多方块或多连方块,是由全等正方形连成的图形,包括四格骨牌,五格骨牌和六格骨牌等等,n格骨牌的个数为:(镜射或旋转视作同一种)

除了n=0, 1, 2的显然条件以外,只有n=5的时候才能用所有的n格骨牌填满一个长方形(见五格骨牌#长方形填充),n=3的情形显然无解,对n=4跟n=6无解的证明要用到肢解国际象棋盘问题的概念,而 n 7 {\displaystyle n\geq 7} 则是n格骨牌中有些是中间有空洞的,因此也无解。

有三种多格骨牌,使用对称性分类:

若A(n)是自由n格骨牌的总数,有人猜想

A n c λ n / n {\displaystyle A_{n}\sim c\lambda ^{n}/n}

其中 c 0.3169 ,   λ 4.0626 {\displaystyle c\approx 0.3169,\ \lambda \approx 4.0626} 。但是这个是未解决的问题,缺乏证明。

但是有人证明A表示指数增长( 4.00253 < λ < 4.65 {\displaystyle 4.00253<\lambda <4.65}

lim n ( A n ) 1 / n = λ {\displaystyle \lim _{n\to \infty }(A_{n})^{1/n}=\lambda }

这也许是普遍性的极限。

有时候这些问题是NP完全的,或者跟递归集合有关。

任何少于或等于六格的骨牌都可以铺满整个平面,因为都满足康威准则,而全部108种七格骨牌当中,有101种满足康威准则,而有104种可以铺满整个平面,另外4种(包括唯一一个中间有洞的那种)是没办法铺满整个平面的,至于369种八格骨牌则有320种满足康威准则,343种可以铺满整个平面,1285种九格骨牌则有960种满足康威准则,1050种可以铺满整个平面。

若需要至少n把多格骨牌P覆盖任何长方形(或长方形的格子),则n是P的次数(order)。若不可以覆盖(例如Z形的四格骨牌),次数是未定义的。

L形骨牌有次数2。

次数 4 n {\displaystyle 4n} 的骨牌存在(n是整数)。

次数3 的骨牌不存在。

不知道可以使用5、7、9把骨牌密铺一个长方形。有次数2的骨牌P,可以使用11把P覆盖一个更大的长方形。

更大奇数次数的骨牌存在。

但是截至2020年,有两个未解决的问题:

若可以用骨牌A覆盖每把n格骨牌,则A是共同超形式(common superform、CS)。若A有最小的面积,则A是最小共同超形式(minimal common superform、MCS)。比方说,五格骨牌的MCS是下面两把九格骨牌。无论P是哪一把五格骨牌,P都可以放在这两把骨牌。

  ###     ########    #####  #       #

参见

  • 多连立方体
  • 渗流理论
  • 杨表
  • 角斗士棋
  • 多格形(polyform)

参考文献

  1. ^ 1.0 1.1 1.2 1.3 Golomb, Golomb. Polyominoes. 1975. 
  2. ^ (OEIS中的数列A000105)
  3. ^ (OEIS中的数列A000988)
  4. ^ (OEIS中的数列A001168)
  5. ^ Jensen, Iwan. Enumerations of Lattice Animals and Trees. Journal of Statistical Physics. 2001, 102 (3/4): 865–881. doi:10.1023/A:1004855020556.  |author=|last=只需其一 (帮助)
  6. ^ Conway, A. Enumerating 2D percolation series by the finite-lattice method: theory. Journal of Physics A: Mathematical and General. 1995-01-21, 28 (2): 335–349. ISSN 0305-4470. doi:10.1088/0305-4470/28/2/011. 
  7. ^ Jensen, Iwan; Guttmann, Anthony J. Statistics of lattice animals (polyominoes) and polygons. Journal of Physics A: Mathematical and General. 2000-07-28, 33 (29): L257–L263. ISSN 0305-4470. doi:10.1088/0305-4470/33/29/102. 
  8. ^ Barequet Gill, Rote Günter; ShalahMira. λ > 4: an improved lower bound on the growth constant of polyominoes. Communications of the ACM. 2016-06-24. doi:10.1145/2851485 (英语).  Authors list列表缺少|last2= (帮助)
  9. ^ Klarner, D. A.; Rivest, R. L. A Procedure for Improving the Upper Bound for the Number of n -Ominoes. Canadian Journal of Mathematics. 1973-06, 25 (3): 585–602. ISSN 0008-414X. doi:10.4153/CJM-1973-060-4 (英语). 
  10. ^ Golomb, Solomon W. Tiling with sets of polyominoes. Journal of Combinatorial Theory. 1970-07, 9 (1): 60–71. doi:10.1016/S0021-9800(70)80055-2 (英语). 
  11. ^ Tiling Rectangles With Polyominoes. www.eklhad.net. . 
  12. ^ 12.0 12.1 12.2 12.3 12.4 Golomb, Solomon W. (Solomon Wolf). Polyominoes : puzzles, patterns, problems, and packings. 2nd ed. Princeton, N.J.: Princeton University Press https://www.worldcat.org/oclc/29358809. 1994. ISBN 0-691-08573-0. OCLC 29358809.  缺少或|title=为空 (帮助) 引文格式1维护:冗余文本 (link)
  13. ^ Weisstein, Eric W. L-Polyomino. mathworld.wolfram.com. (英语). 
  14. ^ Stewart, I. N; Wormstein, A. Polyominoes of order 3 do not exist. Journal of Combinatorial Theory, Series A. 1992-09-01, 61 (1): 130–136. ISSN 0097-3165. doi:10.1016/0097-3165(92)90058-3 (英语). 
  15. ^ Primes of the P hexomino. www.cflmath.com. . 
  16. ^ Tiling Rectangles and Half Strips with Congruent Polyominoes. www.cflmath.com. . 
  17. ^ co.combinatorics - Cutting a rectangle into an odd number of congruent pieces. MathOverflow. . 
  18. ^ Polyomino Common Superforms. puzzlezapper.com. . 
  19. ^ Whittington, S. G.; Soteros, C. E. (1990)., Whittington, S. G.; Soteros, C. E. (1990). "Lattice Animals: Rigorous Results and Wild Guesses".. 
  20. ^ In Grimmett, G.; Welsh, D. (eds.)., In Grimmett, G.; Welsh, D. (eds.). Disorder in Physical Systems. Oxford University Press.. 


相关

  • 贺拉斯昆图斯·贺拉斯·弗拉库斯(拉丁语:Quintus Horatius Flaccus、希腊语:Οράτιος,前65年12月8日意大利韦诺萨 - 前8年11月27日意大利罗马),奥古斯都时期的著名诗人、批评家、
  • 副甲状腺素1BWX, 1ET1, 1ET2, 1FVY, 1HPH, 1HPY, 1HTH, 1ZWA, 1ZWB, 1ZWD, 1ZWE, 1ZWF, 1ZWG, 3C4M· parathyroid hormone receptor binding· extracellular region · extracellul
  • 克勉七世教宗克莱孟七世(拉丁语:Clemens PP. VII;1478年5月26日-1534年9月25日)原名儒略·德·美第奇(Giulio de' Medici),1523年11月19日当选罗马主教(教宗),同年11月26日即位至1534年9月25日
  • 商业客机事故列表以下是商业客机事故列表。航空史 · 飞行器(制造商) · 飞行器发动机(制造商) · 旋翼机(制造商) · 机场 · 航线 · 博物馆民用飞机(启始客户) · 喷射客机 · 货机 · 航空公司(已
  • 二进制二进制(binary)在数学和数字电路中指以2为基数的记数系统,以2为基数代表系统是二进位制的。这一系统中,通常用两个不同的符号0(代表零)和1(代表一)来表示。数字电子电路中,逻辑门直接
  • 伪体染色体区拟常染色体区(英语:pseudoautosomal region),又称伪体染色体区,是在高等动物性染色体(即X染色体和Y染色体)上的一段同源序列,分为PAR1和PAR2两部分,拟常染色体区上已发现至少29个基因
  • 韵文韵文是讲究格律的文体或文章,一些韵文使用同韵母的音节作句字结尾,以求押韵。押韵是指在某些句子的最后一个音节的韵母都相同或相近,使朗诵或咏唱时,产生铿锵和谐感。这些使用了
  • 张 维张维(1913年5月22日-2001年10月4日),北京人,中国固体力学家。1913年出生于北京。1933年毕业于唐山交通大学,1938年获伦敦帝国理工学院工学硕士学位,1944年获柏林高等工业学校工程博
  • 南京理工大学坐标:32°01′59.88″N 118°51′06.92″E / 32.0333000°N 118.8519222°E / 32.0333000; 118.8519222南京理工大学是直属于中华人民共和国工业和信息化部的全国重点大学。
  • 基切马梅语支基切语(K'iche', Quiché)是一种马雅语系语言,为危地马拉基切人所使用的语言。危地马拉约有7%的人口(约一百万人)会说基切语,为该国仅次于西班牙语使用族群最广泛的语言。基切语有