多格骨牌

✍ dations ◷ 2025-04-04 11:17:05 #数学中未解决的问题,多连块,骨牌,几何形状,离散几何

多格骨牌(Polyomino),又称多连块、多连方、多方块或多连方块,是由全等正方形连成的图形,包括四格骨牌,五格骨牌和六格骨牌等等,n格骨牌的个数为:(镜射或旋转视作同一种)

除了n=0, 1, 2的显然条件以外,只有n=5的时候才能用所有的n格骨牌填满一个长方形(见五格骨牌#长方形填充),n=3的情形显然无解,对n=4跟n=6无解的证明要用到肢解国际象棋盘问题的概念,而 n 7 {\displaystyle n\geq 7} 则是n格骨牌中有些是中间有空洞的,因此也无解。

有三种多格骨牌,使用对称性分类:

若A(n)是自由n格骨牌的总数,有人猜想

A n c λ n / n {\displaystyle A_{n}\sim c\lambda ^{n}/n}

其中 c 0.3169 ,   λ 4.0626 {\displaystyle c\approx 0.3169,\ \lambda \approx 4.0626} 。但是这个是未解决的问题,缺乏证明。

但是有人证明A表示指数增长( 4.00253 < λ < 4.65 {\displaystyle 4.00253<\lambda <4.65}

lim n ( A n ) 1 / n = λ {\displaystyle \lim _{n\to \infty }(A_{n})^{1/n}=\lambda }

这也许是普遍性的极限。

有时候这些问题是NP完全的,或者跟递归集合有关。

任何少于或等于六格的骨牌都可以铺满整个平面,因为都满足康威准则,而全部108种七格骨牌当中,有101种满足康威准则,而有104种可以铺满整个平面,另外4种(包括唯一一个中间有洞的那种)是没办法铺满整个平面的,至于369种八格骨牌则有320种满足康威准则,343种可以铺满整个平面,1285种九格骨牌则有960种满足康威准则,1050种可以铺满整个平面。

若需要至少n把多格骨牌P覆盖任何长方形(或长方形的格子),则n是P的次数(order)。若不可以覆盖(例如Z形的四格骨牌),次数是未定义的。

L形骨牌有次数2。

次数 4 n {\displaystyle 4n} 的骨牌存在(n是整数)。

次数3 的骨牌不存在。

不知道可以使用5、7、9把骨牌密铺一个长方形。有次数2的骨牌P,可以使用11把P覆盖一个更大的长方形。

更大奇数次数的骨牌存在。

但是截至2020年,有两个未解决的问题:

若可以用骨牌A覆盖每把n格骨牌,则A是共同超形式(common superform、CS)。若A有最小的面积,则A是最小共同超形式(minimal common superform、MCS)。比方说,五格骨牌的MCS是下面两把九格骨牌。无论P是哪一把五格骨牌,P都可以放在这两把骨牌。

  ###     ########    #####  #       #

参见

  • 多连立方体
  • 渗流理论
  • 杨表
  • 角斗士棋
  • 多格形(polyform)

参考文献

  1. ^ 1.0 1.1 1.2 1.3 Golomb, Golomb. Polyominoes. 1975. 
  2. ^ (OEIS中的数列A000105)
  3. ^ (OEIS中的数列A000988)
  4. ^ (OEIS中的数列A001168)
  5. ^ Jensen, Iwan. Enumerations of Lattice Animals and Trees. Journal of Statistical Physics. 2001, 102 (3/4): 865–881. doi:10.1023/A:1004855020556.  |author=|last=只需其一 (帮助)
  6. ^ Conway, A. Enumerating 2D percolation series by the finite-lattice method: theory. Journal of Physics A: Mathematical and General. 1995-01-21, 28 (2): 335–349. ISSN 0305-4470. doi:10.1088/0305-4470/28/2/011. 
  7. ^ Jensen, Iwan; Guttmann, Anthony J. Statistics of lattice animals (polyominoes) and polygons. Journal of Physics A: Mathematical and General. 2000-07-28, 33 (29): L257–L263. ISSN 0305-4470. doi:10.1088/0305-4470/33/29/102. 
  8. ^ Barequet Gill, Rote Günter; ShalahMira. λ > 4: an improved lower bound on the growth constant of polyominoes. Communications of the ACM. 2016-06-24. doi:10.1145/2851485 (英语).  Authors list列表缺少|last2= (帮助)
  9. ^ Klarner, D. A.; Rivest, R. L. A Procedure for Improving the Upper Bound for the Number of n -Ominoes. Canadian Journal of Mathematics. 1973-06, 25 (3): 585–602. ISSN 0008-414X. doi:10.4153/CJM-1973-060-4 (英语). 
  10. ^ Golomb, Solomon W. Tiling with sets of polyominoes. Journal of Combinatorial Theory. 1970-07, 9 (1): 60–71. doi:10.1016/S0021-9800(70)80055-2 (英语). 
  11. ^ Tiling Rectangles With Polyominoes. www.eklhad.net. . 
  12. ^ 12.0 12.1 12.2 12.3 12.4 Golomb, Solomon W. (Solomon Wolf). Polyominoes : puzzles, patterns, problems, and packings. 2nd ed. Princeton, N.J.: Princeton University Press https://www.worldcat.org/oclc/29358809. 1994. ISBN 0-691-08573-0. OCLC 29358809.  缺少或|title=为空 (帮助) 引文格式1维护:冗余文本 (link)
  13. ^ Weisstein, Eric W. L-Polyomino. mathworld.wolfram.com. (英语). 
  14. ^ Stewart, I. N; Wormstein, A. Polyominoes of order 3 do not exist. Journal of Combinatorial Theory, Series A. 1992-09-01, 61 (1): 130–136. ISSN 0097-3165. doi:10.1016/0097-3165(92)90058-3 (英语). 
  15. ^ Primes of the P hexomino. www.cflmath.com. . 
  16. ^ Tiling Rectangles and Half Strips with Congruent Polyominoes. www.cflmath.com. . 
  17. ^ co.combinatorics - Cutting a rectangle into an odd number of congruent pieces. MathOverflow. . 
  18. ^ Polyomino Common Superforms. puzzlezapper.com. . 
  19. ^ Whittington, S. G.; Soteros, C. E. (1990)., Whittington, S. G.; Soteros, C. E. (1990). "Lattice Animals: Rigorous Results and Wild Guesses".. 
  20. ^ In Grimmett, G.; Welsh, D. (eds.)., In Grimmett, G.; Welsh, D. (eds.). Disorder in Physical Systems. Oxford University Press.. 


相关

  • 尿道综合征尿道综合征(Urethral syndrome)为较低段的泌尿道感染之一组病症。然而,尿道综合征是不同于其它的泌尿道疾病、由于其没有传统上的病原体菌尿(bacteriuria)显著的症状呈现。典
  • 新闻新闻,在中国古代又称新文,近代有时泛指报纸,在日语及韩语汉字中则只有报纸一义。通常指新闻机构发布的最近发生事件的消息报道。据程栋新著《第二代新闻学》,新闻的定义分两层:认
  • 贝里学院贝里学院(Berry College)是位于美国乔治亚州弗洛伊德县贝里山(Mount Berry)地区的一所私立四年制文理学院,距离县治罗马不远。它于1902年由美国教育家玛莎·贝里(Martha Berry)创立
  • 施泰茨托马斯·阿瑟·施泰茨(英语:Thomas Arthur Steitz,1940年8月23日-2018年10月9日),美国生物化学家,2009年诺贝尔化学奖得主之一。施泰茨出生于美国威斯康星州的密尔沃基,1962年本科毕
  • 爱德华八世爱德华八世(英语:Edward VIII,1894年6月23日-1972年5月28日),全名爱德华·阿尔伯特·克里斯蒂安·乔治·安德鲁·帕特里克·大卫(Edward Albert Christian George Andrew Patrick D
  • (叙利亚)马里马里(英语:Mari,即现在叙利亚境内的特尔·哈利利(Tell Hariri))是古代苏美尔亚摩利人建立的城邦,位于幼发拉底河中流的西岸。位于现在叙利亚的阿布·卡马尔西北部11km处,代尔祖尔东
  • 后藤邑子后藤邑子(1975年8月28日-),是日本爱知县出身的声优。所属事务所为AXL ONE。身高160cm,血型为O型。代表作有《S·A特优生》(华园光)、《Code Geass 反叛的鲁路修》(亚妮·阿尔斯托雷
  • 刑事政策刑事政策(英语:Criminal Policy,德语:Kriminalpolitik)是刑事法学、犯罪学、犯罪社会学、犯罪心理学与政治学的汇流学门,主要探讨:政府如何在不侵犯人权底线的前提下,以及公帑成本效
  • 印地安美洲原住民,是对美洲所有原住民的总称。美洲原住民中的绝大多数为印第安人,剩下的则是主要位于北美洲北部的因纽特人。美洲原住民属于东亚人种美洲支系,与现代东亚人有共同的祖
  • 长吻鳄科长吻鳄科(学名Gavialidae)又名食鱼鳄科,是爬行纲鳄目下的一科,现存仅有两种:恒河鳄(Gavialis gangeticus)和马来鳄(Tomistoma schlegelii)。长吻鳄科是大型半水生爬行动物,口鼻部