多格骨牌

✍ dations ◷ 2025-11-18 20:23:49 #数学中未解决的问题,多连块,骨牌,几何形状,离散几何

多格骨牌(Polyomino),又称多连块、多连方、多方块或多连方块,是由全等正方形连成的图形,包括四格骨牌,五格骨牌和六格骨牌等等,n格骨牌的个数为:(镜射或旋转视作同一种)

除了n=0, 1, 2的显然条件以外,只有n=5的时候才能用所有的n格骨牌填满一个长方形(见五格骨牌#长方形填充),n=3的情形显然无解,对n=4跟n=6无解的证明要用到肢解国际象棋盘问题的概念,而 n 7 {\displaystyle n\geq 7} 则是n格骨牌中有些是中间有空洞的,因此也无解。

有三种多格骨牌,使用对称性分类:

若A(n)是自由n格骨牌的总数,有人猜想

A n c λ n / n {\displaystyle A_{n}\sim c\lambda ^{n}/n}

其中 c 0.3169 ,   λ 4.0626 {\displaystyle c\approx 0.3169,\ \lambda \approx 4.0626} 。但是这个是未解决的问题,缺乏证明。

但是有人证明A表示指数增长( 4.00253 < λ < 4.65 {\displaystyle 4.00253<\lambda <4.65}

lim n ( A n ) 1 / n = λ {\displaystyle \lim _{n\to \infty }(A_{n})^{1/n}=\lambda }

这也许是普遍性的极限。

有时候这些问题是NP完全的,或者跟递归集合有关。

任何少于或等于六格的骨牌都可以铺满整个平面,因为都满足康威准则,而全部108种七格骨牌当中,有101种满足康威准则,而有104种可以铺满整个平面,另外4种(包括唯一一个中间有洞的那种)是没办法铺满整个平面的,至于369种八格骨牌则有320种满足康威准则,343种可以铺满整个平面,1285种九格骨牌则有960种满足康威准则,1050种可以铺满整个平面。

若需要至少n把多格骨牌P覆盖任何长方形(或长方形的格子),则n是P的次数(order)。若不可以覆盖(例如Z形的四格骨牌),次数是未定义的。

L形骨牌有次数2。

次数 4 n {\displaystyle 4n} 的骨牌存在(n是整数)。

次数3 的骨牌不存在。

不知道可以使用5、7、9把骨牌密铺一个长方形。有次数2的骨牌P,可以使用11把P覆盖一个更大的长方形。

更大奇数次数的骨牌存在。

但是截至2020年,有两个未解决的问题:

若可以用骨牌A覆盖每把n格骨牌,则A是共同超形式(common superform、CS)。若A有最小的面积,则A是最小共同超形式(minimal common superform、MCS)。比方说,五格骨牌的MCS是下面两把九格骨牌。无论P是哪一把五格骨牌,P都可以放在这两把骨牌。

  ###     ########    #####  #       #

参见

  • 多连立方体
  • 渗流理论
  • 杨表
  • 角斗士棋
  • 多格形(polyform)

参考文献

  1. ^ 1.0 1.1 1.2 1.3 Golomb, Golomb. Polyominoes. 1975. 
  2. ^ (OEIS中的数列A000105)
  3. ^ (OEIS中的数列A000988)
  4. ^ (OEIS中的数列A001168)
  5. ^ Jensen, Iwan. Enumerations of Lattice Animals and Trees. Journal of Statistical Physics. 2001, 102 (3/4): 865–881. doi:10.1023/A:1004855020556.  |author=|last=只需其一 (帮助)
  6. ^ Conway, A. Enumerating 2D percolation series by the finite-lattice method: theory. Journal of Physics A: Mathematical and General. 1995-01-21, 28 (2): 335–349. ISSN 0305-4470. doi:10.1088/0305-4470/28/2/011. 
  7. ^ Jensen, Iwan; Guttmann, Anthony J. Statistics of lattice animals (polyominoes) and polygons. Journal of Physics A: Mathematical and General. 2000-07-28, 33 (29): L257–L263. ISSN 0305-4470. doi:10.1088/0305-4470/33/29/102. 
  8. ^ Barequet Gill, Rote Günter; ShalahMira. λ > 4: an improved lower bound on the growth constant of polyominoes. Communications of the ACM. 2016-06-24. doi:10.1145/2851485 (英语).  Authors list列表缺少|last2= (帮助)
  9. ^ Klarner, D. A.; Rivest, R. L. A Procedure for Improving the Upper Bound for the Number of n -Ominoes. Canadian Journal of Mathematics. 1973-06, 25 (3): 585–602. ISSN 0008-414X. doi:10.4153/CJM-1973-060-4 (英语). 
  10. ^ Golomb, Solomon W. Tiling with sets of polyominoes. Journal of Combinatorial Theory. 1970-07, 9 (1): 60–71. doi:10.1016/S0021-9800(70)80055-2 (英语). 
  11. ^ Tiling Rectangles With Polyominoes. www.eklhad.net. . 
  12. ^ 12.0 12.1 12.2 12.3 12.4 Golomb, Solomon W. (Solomon Wolf). Polyominoes : puzzles, patterns, problems, and packings. 2nd ed. Princeton, N.J.: Princeton University Press https://www.worldcat.org/oclc/29358809. 1994. ISBN 0-691-08573-0. OCLC 29358809.  缺少或|title=为空 (帮助) 引文格式1维护:冗余文本 (link)
  13. ^ Weisstein, Eric W. L-Polyomino. mathworld.wolfram.com. (英语). 
  14. ^ Stewart, I. N; Wormstein, A. Polyominoes of order 3 do not exist. Journal of Combinatorial Theory, Series A. 1992-09-01, 61 (1): 130–136. ISSN 0097-3165. doi:10.1016/0097-3165(92)90058-3 (英语). 
  15. ^ Primes of the P hexomino. www.cflmath.com. . 
  16. ^ Tiling Rectangles and Half Strips with Congruent Polyominoes. www.cflmath.com. . 
  17. ^ co.combinatorics - Cutting a rectangle into an odd number of congruent pieces. MathOverflow. . 
  18. ^ Polyomino Common Superforms. puzzlezapper.com. . 
  19. ^ Whittington, S. G.; Soteros, C. E. (1990)., Whittington, S. G.; Soteros, C. E. (1990). "Lattice Animals: Rigorous Results and Wild Guesses".. 
  20. ^ In Grimmett, G.; Welsh, D. (eds.)., In Grimmett, G.; Welsh, D. (eds.). Disorder in Physical Systems. Oxford University Press.. 


相关

  • 植物修复植物修复(英语:Phytoremediation,音标:/ˌfaɪtəʊrɪˌmiːdɪˈeɪʃən/) (Template:Ety) 是指利用植物修复受污染土壤的过程。植物修复是一种以植物为基础、具有成本效益的
  • 当归当归(学名:Angelica sinensis),属伞形科的一种植物。一般作为药用。多年生草本植物,高0.4~1米。茎直立,有纵直槽纹,无毛。二或三回三出式羽状复叶,小叶卵形,浅裂或有缺刻。开白色花,复
  • 卷柏目卷柏(Selaginella),为石松门卷柏属的植物,属下约有700种卷柏,例子有二形卷柏、单子卷柏。如其他石松门植物,卷柏的叶子是只有一根叶脉的小型叶(microphylle),并以孢子作有性繁殖。江
  • 菖蒲菖蒲(学名:Acorus calamus),也叫做白菖蒲、藏菖蒲,古名蒖、䒢,是一种菖蒲科的水生草本植物。菖蒲分布很广,整个温带基本都能找到它,中国各地也都有分布。菖蒲可以提取芳香油;端午节有
  • 蜜蚁蜜蚁(英语:Honey Ant),又称之为蜜壶蚁或蜜罐蚁(Honeypot Ant),是蜜罐蚁属(英语:Myrmecocystus)和弓背蚁属等几属蚂蚁的统称,最大特征在于具有一种称为贮蜜蚁(英语:repletes, plerergates,
  • 淡水龙山寺坐标:25°10′12″N 121°26′32″E / 25.170062°N 121.4423199°E / 25.170062; 121.4423199淡水龙山寺,为台湾新北市淡水区的庙宇,主祀观世音菩萨。目前为国家三级古迹。淡
  • 1924年冬季奥林匹克运动会1924年冬季奥林匹克运动会(英语:the I Olympic Winter Games,法语:les Iers Jeux olympiques d'hiver),也就是第一届冬季奥林匹克运动会,在法国的霞慕尼举行。原本称为“国际冬季运
  • 氯酸镁氯酸镁(Magnesium chlorate),化学式Mg(ClO3)2·6H2O。常带有六个结晶水(六水合氯酸镁)。氯酸镁为无色斜方片状或针状结晶。溶于水,微溶于醇、丙酮。通过氯酸钠溶液与氯化镁溶液反
  • 世界各国和地区直升飞机场和直升飞机机队数量列表这个列表列出了世界各国和地区直升飞机场和直升飞机机队数量,此列表中定义的直升飞机场包括各国/地区的拥有硬质跑道、直升机停机坪或其他特殊专用于支持常规的直升机运行的
  • 加拿大国旗加拿大国旗,又称枫叶旗(英语:Maple Leaf),在法语区称单叶旗(法语:l'Unifolié),是代表加拿大的官方旗帜。加拿大国旗为红色旗帜,中间镶嵌白色方格,白色方格上有绘有一片13个顶点的非写