多格骨牌

✍ dations ◷ 2024-12-23 00:35:54 #数学中未解决的问题,多连块,骨牌,几何形状,离散几何

多格骨牌(Polyomino),又称多连块、多连方、多方块或多连方块,是由全等正方形连成的图形,包括四格骨牌,五格骨牌和六格骨牌等等,n格骨牌的个数为:(镜射或旋转视作同一种)

除了n=0, 1, 2的显然条件以外,只有n=5的时候才能用所有的n格骨牌填满一个长方形(见五格骨牌#长方形填充),n=3的情形显然无解,对n=4跟n=6无解的证明要用到肢解国际象棋盘问题的概念,而 n 7 {\displaystyle n\geq 7} 则是n格骨牌中有些是中间有空洞的,因此也无解。

有三种多格骨牌,使用对称性分类:

若A(n)是自由n格骨牌的总数,有人猜想

A n c λ n / n {\displaystyle A_{n}\sim c\lambda ^{n}/n}

其中 c 0.3169 ,   λ 4.0626 {\displaystyle c\approx 0.3169,\ \lambda \approx 4.0626} 。但是这个是未解决的问题,缺乏证明。

但是有人证明A表示指数增长( 4.00253 < λ < 4.65 {\displaystyle 4.00253<\lambda <4.65}

lim n ( A n ) 1 / n = λ {\displaystyle \lim _{n\to \infty }(A_{n})^{1/n}=\lambda }

这也许是普遍性的极限。

有时候这些问题是NP完全的,或者跟递归集合有关。

任何少于或等于六格的骨牌都可以铺满整个平面,因为都满足康威准则,而全部108种七格骨牌当中,有101种满足康威准则,而有104种可以铺满整个平面,另外4种(包括唯一一个中间有洞的那种)是没办法铺满整个平面的,至于369种八格骨牌则有320种满足康威准则,343种可以铺满整个平面,1285种九格骨牌则有960种满足康威准则,1050种可以铺满整个平面。

若需要至少n把多格骨牌P覆盖任何长方形(或长方形的格子),则n是P的次数(order)。若不可以覆盖(例如Z形的四格骨牌),次数是未定义的。

L形骨牌有次数2。

次数 4 n {\displaystyle 4n} 的骨牌存在(n是整数)。

次数3 的骨牌不存在。

不知道可以使用5、7、9把骨牌密铺一个长方形。有次数2的骨牌P,可以使用11把P覆盖一个更大的长方形。

更大奇数次数的骨牌存在。

但是截至2020年,有两个未解决的问题:

若可以用骨牌A覆盖每把n格骨牌,则A是共同超形式(common superform、CS)。若A有最小的面积,则A是最小共同超形式(minimal common superform、MCS)。比方说,五格骨牌的MCS是下面两把九格骨牌。无论P是哪一把五格骨牌,P都可以放在这两把骨牌。

  ###     ########    #####  #       #

参见

  • 多连立方体
  • 渗流理论
  • 杨表
  • 角斗士棋
  • 多格形(polyform)

参考文献

  1. ^ 1.0 1.1 1.2 1.3 Golomb, Golomb. Polyominoes. 1975. 
  2. ^ (OEIS中的数列A000105)
  3. ^ (OEIS中的数列A000988)
  4. ^ (OEIS中的数列A001168)
  5. ^ Jensen, Iwan. Enumerations of Lattice Animals and Trees. Journal of Statistical Physics. 2001, 102 (3/4): 865–881. doi:10.1023/A:1004855020556.  |author=|last=只需其一 (帮助)
  6. ^ Conway, A. Enumerating 2D percolation series by the finite-lattice method: theory. Journal of Physics A: Mathematical and General. 1995-01-21, 28 (2): 335–349. ISSN 0305-4470. doi:10.1088/0305-4470/28/2/011. 
  7. ^ Jensen, Iwan; Guttmann, Anthony J. Statistics of lattice animals (polyominoes) and polygons. Journal of Physics A: Mathematical and General. 2000-07-28, 33 (29): L257–L263. ISSN 0305-4470. doi:10.1088/0305-4470/33/29/102. 
  8. ^ Barequet Gill, Rote Günter; ShalahMira. λ > 4: an improved lower bound on the growth constant of polyominoes. Communications of the ACM. 2016-06-24. doi:10.1145/2851485 (英语).  Authors list列表缺少|last2= (帮助)
  9. ^ Klarner, D. A.; Rivest, R. L. A Procedure for Improving the Upper Bound for the Number of n -Ominoes. Canadian Journal of Mathematics. 1973-06, 25 (3): 585–602. ISSN 0008-414X. doi:10.4153/CJM-1973-060-4 (英语). 
  10. ^ Golomb, Solomon W. Tiling with sets of polyominoes. Journal of Combinatorial Theory. 1970-07, 9 (1): 60–71. doi:10.1016/S0021-9800(70)80055-2 (英语). 
  11. ^ Tiling Rectangles With Polyominoes. www.eklhad.net. . 
  12. ^ 12.0 12.1 12.2 12.3 12.4 Golomb, Solomon W. (Solomon Wolf). Polyominoes : puzzles, patterns, problems, and packings. 2nd ed. Princeton, N.J.: Princeton University Press https://www.worldcat.org/oclc/29358809. 1994. ISBN 0-691-08573-0. OCLC 29358809.  缺少或|title=为空 (帮助) 引文格式1维护:冗余文本 (link)
  13. ^ Weisstein, Eric W. L-Polyomino. mathworld.wolfram.com. (英语). 
  14. ^ Stewart, I. N; Wormstein, A. Polyominoes of order 3 do not exist. Journal of Combinatorial Theory, Series A. 1992-09-01, 61 (1): 130–136. ISSN 0097-3165. doi:10.1016/0097-3165(92)90058-3 (英语). 
  15. ^ Primes of the P hexomino. www.cflmath.com. . 
  16. ^ Tiling Rectangles and Half Strips with Congruent Polyominoes. www.cflmath.com. . 
  17. ^ co.combinatorics - Cutting a rectangle into an odd number of congruent pieces. MathOverflow. . 
  18. ^ Polyomino Common Superforms. puzzlezapper.com. . 
  19. ^ Whittington, S. G.; Soteros, C. E. (1990)., Whittington, S. G.; Soteros, C. E. (1990). "Lattice Animals: Rigorous Results and Wild Guesses".. 
  20. ^ In Grimmett, G.; Welsh, D. (eds.)., In Grimmett, G.; Welsh, D. (eds.). Disorder in Physical Systems. Oxford University Press.. 


相关

  • 大灭绝生物集群灭绝是指在一个相对短暂的地质时段中,在一个以上并且较大的地理区域范围内,生物数量和种类急剧下降的事件。这个概念主要是指宏观生物,因为微生物的多样性和数量很难推
  • 太空法空间法是有关于规范人类在太空活动的系列国际法的统称。也是世界各国所普遍接受的作为对其和其公民在外层空间和其他星球上的活动作出规范的具有强制性的国际法规。但是外层
  • 血管紧张素转换酶抑制剂血管紧张肽I转化酶抑制剂(英语:ACE inhibitor,简称为ACEI)是一类抗高血压药。血管紧张素转化酶(ACE)是肾素-血管紧张素-醛固酮(RAA)系统中的一个重要环节,该系统对血压的调节有着及其
  • 杉田玄白杉田 玄白(日语:すぎた げんぱく,1733年10月20日-1817年6月1日)名翼(たすく)、字子凤、号鷧、晩年号九幸翁。,日本江戸时代的兰学医生,主办医学私塾天真楼,曾翻译《解体新书》。 杉田
  • 约克角半岛约克角半岛(英语:Cape York Peninsula)是澳大利亚北部昆士兰州的一个半岛,其北端约克角是澳大利亚大陆的极北点。该半岛在1770年由英国航海家詹姆斯·库克以约克公爵的封号命名
  • 河鲈河鲈科(学名:Percidae)为辐鳍鱼纲鲈形目的其中一个科。河鲈科其下分11个属归类于3个亚科,如下:
  • 庇隆主义阿根廷政府与政治 系列条目现任毛里西奥·马克里庇隆主义 国家工团主义 民族社会主义 民族无政府主义 民族布尔什维克主义纳粹党 前沿交叉 官方全国战线 第三位置组织 新力
  • 帕齐·雷迪帕齐·雷迪(英语:Patsy Reddy;1954年5月17日-),是新西兰政治人物和律师。她于2016年5月28日开始担任新西兰总督。雷迪出生于新西兰Matamata,毕业于威灵顿维多利亚大学法律系。她是
  • 1988年司法危机1988年马来西亚司法危机(或称为1988年马来西亚宪政危机)是指一系列发生在马来西亚的宪政危机,其可追溯到1987年巫统(UMNO)的党选开始,直到最高法院主席(Lord President of the Supr
  • 八文字DNA八文字DNA(英语:Hachimoji DNA,Hachimoji源自日语“八文字”的发音),是一种人工合成的核酸类似物,除含有四种天然DNA中含有的碱基腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)、胞嘧啶(C)外,还含有另