邻接矩阵法

✍ dations ◷ 2025-10-31 06:41:56 #邻接矩阵法
在图论中,邻接矩阵(英语:adjacency matrix)是表示一种图结构的常用表示方法。它用数字方阵记录各点之间是否有边相连,数字的大小可以表示边的权值大小。距离矩阵可算是邻接矩阵的扩充。阶为 n {displaystyle n} 的图 G {displaystyle G} 的邻接矩阵 A {displaystyle A} 是 n × n {displaystyle ntimes n} 的。将 G {displaystyle G} 的顶点标签为 v 1 , v 2 , . . . , v n {displaystyle v_{1},v_{2},...,v_{n}} 。若 ( v i , v j ) ∈ E ( G ) {displaystyle (v_{i},v_{j})in E(G)} , A i j = 1 {displaystyle A_{ij}=1} ,否则 A i j = 0 {displaystyle A_{ij}=0} 。也可以用大于0的值表示边的权值,例如可以用边权值表示一个点到另一个点的距离。无向图的邻接矩阵是对称矩阵。可以用矩阵表示为:这个矩阵中每一行代表一个点,行a即为点a,每一列代表某一行的点所指向的点,矩阵的每一个(小格)表示一条边。图中的所有边(指向性的箭头)带有权值,通常约定权值为0的边为不存在的边。如此图中的a指向b,箭头旁边的数字(边的权值)为2,在矩阵中表示为行a列b为2。又如矩阵中行c列b为6,图中表现为一条从c指向b权值为6的边。设图 G {displaystyle G} 的邻接矩阵为 A {displaystyle A} ,边的取值为1。A、B、C、D四人传球6次,从A开始,最终回到A手里,有多少种传法?非矩阵解法:矩阵解法:A = ( 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 ) , A 6 = ( 183 182 182 182 182 183 182 182 182 182 183 182 182 182 182 183 ) {displaystyle A={begin{pmatrix}0&1&1&1\1&0&1&1\1&1&0&1\1&1&1&0\end{pmatrix}},A^{6}={begin{pmatrix}183&182&182&182\182&183&182&182\182&182&183&182\182&182&182&183\end{pmatrix}}}邻接矩阵法是比较简单的图论问题建模方法,它以方形二维阵列的形式存储图的数据。它在算法应用中的主要特点包括:主要缺点包括:在随机过程理论中,表示单步状态变化的转移矩阵就是一种邻接矩阵。

相关

  • 相似疾病或共病的百科知识|相似疾病或共病的意思解释|相似疾病或共病是什么意思指的是将某个特定疾病从其他展现类似症状的疾病中区分开来。医师对病患作鉴别诊断,诊断特定的疾病,或著至少消除立即致命的情有时每个可能的病因都被称为一个鉴别诊断(例如:在评
  • 美洲原住民美洲原住民,是对美洲所有原住民的总称。美洲原住民中的绝大多数为印第安人,剩下的则是主要位于北美洲北部的因纽特人。美洲原住民属于东亚人种美洲支系,与现代东亚人有共同的祖
  • 肥皂肥皂,又名香皂、雪文(台湾话)、茶箍(台湾话)、饼药(潮汕话)、番枧(广府话),是用作个人清洁用品的表面活性剂,通常以固体块状的形式存在。古代不管是东西方,最早的洗涤成分不外乎都是碳酸
  • 吉利德科学吉利德科学公司(Gilead Sciences, Inc.)是一家美国大型生物制药公司,成立于1987年,总部位于加州旧金山湾区的福斯特城。在台湾注册的名称为“吉立亚”。主要生产和研发针对艾滋
  • 经济在古希腊的经济中,由于希腊贫瘠的土地,农业极其重要.到了公元前6世纪,工艺和贸易(主要是海上贸易)开始发展,然后变得重要。经济这个概念在古希腊跟现代并不相同。 希腊语oikonomia
  • 保健科学医疗卫生科学(又称:医疗科学、健康科学、保健科学)与应用科学息息相关,旨在运用理工及技术之知识,解决与生物健康有关的问题。除了传统的医学外,此类学科还包括护理、公共卫生等学
  • 平民会议平民会议(拉丁语:Concilium Plebis)是古代罗马共和国的主要大会和立法机构,平民可以通过该机构通过法律,选举地方行政官,审理司法案件。唯有平民保民官有权召开大会。会议可选举平
  • 稳定岛稳定岛理论是核子物理中的一个理论推测,核物理学家推测原子核的质子数和中子数为“幻数”的超重元素会特别稳定。假如这个猜测正确的话,那么某些特定的超重元素的同位素将比其
  • 灰狼狼(学名:Canis lupus),或称为灰狼,哺乳纲,犬科,在生物学上与狗为同一物种,为现生犬科动物中体型最大的物种。狼这个物种曾是地球上分布地区最广的哺乳动物,包括北美和欧亚大陆,但如今
  • 接合生殖水绵是水绵属(学名:Spirogyra)绿藻门物种的总称,又名石衣、水衣、水苔、石发、陟厘、侧梨、水青苔,是一种普遍生活在淡水里的真核多细胞藻类,因体内含有1-16条带状、螺旋形的叶绿体