首页 >
数列
✍ dations ◷ 2024-11-05 14:58:51 #数列
数列(英语:number sequence)是由数字组成的序列,也即是全序排列的多个数。数列及其相关术语常用于有关递推规律的研究。数列也是级数理论的基本概念。数列是一列两个以上按顺序排列的数,所组成的序列,记为 .mw-parser-output .serif{font-family:Times,serif}⟨ak⟩ 、 {ak} 或 (ak):其中 n ∈ Z+ , Z+ 是正整数集。虽然 {ak} 的记号很常见,但这与无序的集合符号相同,容易引起混淆,因此这里使用记号 ⟨ak⟩ 。数列中的每一个数称为这个数列的“项”。a1 为数列的“第一项”、a2 为“第二项”、 an 则为“第 n 项”。项的总个数为数列的“项数”。数列中的第一项常称为“首项”,最后一项则称为“末项”。注意,有些数列会设为
⟨
a
k
⟩
k
=
0
n
{displaystyle leftlangle a_{k}rightrangle _{k=0}^{n}}
,其中 n ∈ N , N 是自然数集。换句话说,数列以第零项 a0 作为首项。一些有无穷个项的数列,比如全体正整数数列 ⟨ 1, 2, 3, 4, 5, ... ⟩ ,只有首项,没有末项。按照伯特兰·罗素在《西方哲学史》书中的说法,人们也可以定义没有首项的无穷数列:把正整数数列倒过来排列即可。但是这种没有首项的数列,在数学上没有大的用处。数列是特殊的序列,全部由数字组成。序列则范围更广,可以由有序的一系列数字、一系列函数、一系列矢量、一系列矩阵或一系列张量组成,等等。但有的微积分教材用序列一词来称呼数列,读者需要自己留意。数列可被视作函数 f : Z+ → Y,其中 Y 是包含数列中各个项的到达域。从这个角度看,数列能视作一种特殊的函数,称为“整标函数”。数列中各个项的和称为“级数”。但级数的概念的推广至数列以外的序列,比如函数序列的函数项级(英语:function series)。对于含有无穷多项的数列 ⟨ak⟩ ,我们可以为其定义“数列的极限”为常数 L:通常对第1项到第
n
{displaystyle n}
项求和,记为
S
n
=
∑
k
=
1
n
a
k
{displaystyle S_{n}=sum _{k=1}^{n}a_{k}}
。此求和符号是由瑞士数学家莱昂哈德·欧拉使用和推广的。一个特殊数列求和:奇数数列。1,3,5,7,9,...。其和为项数
n
{displaystyle n}
的平方。例如:1+3=22,1+3+5=32。通常,我们从实际问题中会先得到一个递推关系式,但是递推关系式可能会有点复杂,难以观察出数列中某一项的项数和具体大小之间的规律。所以我们希望寻找方法,以求化简数列的递推关系式,从而得到简单明了的一般项公式。一般项公式也叫通项公式。以下是一些常见的递推式化简方法。通项公式的求解在积分学、线性代数、概率论、组合数学、趣味数学、数学物理、数学建模、数值分析、分形等领域中都会遇到。遗憾的是,没有一种方法是万能的,所以通项公式的求解仍然是一个具有一定技巧性的工作。完全求不出通项公式、只能进行估算的情形也是经常出现的。求出该数列的前数项,归纳其通项公式,然后用数学归纳法证明公式正确。数学归纳法是最基本的方法,但对观察和归纳的能力要求比较高。如果猜不出规律,此法则无法使用。给定数列差
d
n
{displaystyle d_{n}}
时逐差全加,例如:给定数列比
r
n
{displaystyle r_{n}}
时逐差全乘,例如:如果已知数列和的公式,那么通项的求解非常容易。由
S
n
=
∑
k
=
1
n
a
n
{displaystyle S_{n}=sum _{k=1}^{n}a_{n}}
可知
S
n
−
S
n
−
1
=
a
n
{displaystyle S_{n}-S_{n-1}=a_{n}}把
S
n
{displaystyle S_{n}}
看成一个数列,可以先对
S
n
{displaystyle S_{n}}
进行求解,然后得出
a
n
{displaystyle a_{n}}
。换元法用于从形式上简化表达式,以突出问题的本质。换元法一般不单独使用,而是和其它方法结合使用。中学数学中常用的有对数换元法、三角函数换元法,还有用得很少的双曲函数换元法。对于形如齐次分式的递推关系,可利用不动点来推导。已知
A
a
n
+
1
+
B
a
n
+
C
=
0
{displaystyle Aa_{n+1}+Ba_{n}+C=0}
,其中
A
{displaystyle A}
、
B
{displaystyle B}
、
C
{displaystyle C}
都是常数,求
a
n
{displaystyle a_{n}}
。
求这类数列的通项公式,一般的方法就是将之化成一个新的等比数列。A
(
a
n
+
1
+
k
)
=
−
B
(
a
n
+
k
)
{displaystyle A(a_{n+1}+k)=-B(a_{n}+k)}
。
求出
k
{displaystyle k}
,那么数列
a
n
+
k
{displaystyle {a_{n}+k}}
就是一个等比数列,从而求出通项公式。A
a
n
+
1
+
B
a
n
+
C
=
0
{displaystyle Aa_{n+1}+Ba_{n}+C=0}
A
a
n
+
B
a
n
−
1
+
C
=
0
{displaystyle Aa_{n}+Ba_{n-1}+C=0}
两边相减就有:
A
(
a
n
+
1
−
a
n
)
+
B
(
a
n
−
a
n
−
1
)
=
0
{displaystyle A(a_{n+1}-a_{n})+B(a_{n}-a_{n-1})=0}
,如此就化成了一个等比数列。已知
A
a
n
+
1
+
B
a
n
+
C
a
n
−
1
+
D
=
0
{displaystyle Aa_{n+1}+Ba_{n}+Ca_{n-1}+D=0}
,其中
A
{displaystyle A}
、
B
{displaystyle B}
、
C
{displaystyle C}
、
D
{displaystyle D}
都为常数,求
a
n
{displaystyle a_{n}}
;
与上述数列一样,它们一定可以化成下面的形式:
A
a
n
+
1
+
E
a
n
=
k
(
A
a
n
+
E
a
n
−
1
)
−
D
{displaystyle Aa_{n+1}+Ea_{n}=k(Aa_{n}+Ea_{n-1})-D}
求出对应系数,于是就转化成了前面那种形式,然后就可以求出数列
A
a
n
+
E
a
n
−
1
{displaystyle {Aa_{n}+Ea_{n-1}}}
的通项公式,然后求出
a
n
{displaystyle a_{n}}
的通项公式。实际上这是一种逐步化简的方法。其它常用方法包括导数求通项法、组合数学中的母函数方法、特征方程法,这些一般是在大学课程或是部分高中的进阶课程中学到。其中特征方程法专门用于线性递推关系式的化简,与求解线性微分方程的特征方程法非常类似。
相关
- 第一代头孢菌素(法语:Cephalosporine、英语:Cephalosporin),又名先锋霉素,是一系列属于β内酰胺类的抗生素。与头霉素一并细分为头孢烯。头孢菌素化合物最初是于1948年,由意大利科学家Giu
- 史蒂芬斯-强森症候群史蒂芬斯-强森综合征(英语:Stevens-Johnson syndrome,缩写为 SJS),又称史提芬强生综合征、史帝文生氏-强生综合征、史帝文生-强生综合征,是"多型性红斑"(Erythema multiforme)的一
- 酵母聚糖酵母聚糖(英语:Zymosan)是一种葡萄糖为单元,之间以β-1,3-糖苷键相连起来葡聚糖。该物质可以结合在Toll样受体2上,并可以与蛋白质组成复合体。酵母聚糖可以从酵母细胞壁中制备得
- 僭主.mw-parser-output ruby.zy{text-align:justify;text-justify:none}.mw-parser-output ruby.zy>rp{user-select:none}.mw-parser-output ruby.zy>rt{font-feature-settings:
- 心身症身心性疾病,也翻译成身心症(somatoform disorder),是指由心理引起生理的疾病。
- 跨学科领域科际整合(英:Interdisciplinarity),或译交叉学科、学科间研究,指的是两个或多个学科相互合作,在同一个目标下进行的学术活动。科际整合的项目通常源于对单一学科无法、或是无意
- 衣藻属正文衣藻属(学名:Chlamydomonas)是绿藻门下一个包括约325个物种的属。他们都是带有鞭毛的单细胞生物。有纤维素壁,营养细胞有两根等长鞭毛,叶绿体杯状,叶绿体前端或侧面有一红色
- 维利·亨尼希埃米尔·汉斯·维利·亨尼希(Emil Hans Willi Hennig,1913年4月20日-1976年11月5日)是德国生物学家,亲缘分支分类法(种系发生学的系统分类学)的创始人,他在进化论和系统分类学方面的
- 阿迪·萨莫尔阿迪·沙米尔(英语:Adi Shamir,希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-size:1.15em;font-family:"Ezra SIL","Ezra SIL SR","Keter A
- ADPAdp或ADP可以指: