数列

✍ dations ◷ 2025-11-14 17:30:46 #数列
数列(英语:number sequence)是由数字组成的序列,也即是全序排列的多个数。数列及其相关术语常用于有关递推规律的研究。数列也是级数理论的基本概念。数列是一列两个以上按顺序排列的数,所组成的序列,记为 .mw-parser-output .serif{font-family:Times,serif}⟨ak⟩ 、 {ak}  或 (ak):其中 n ∈ Z+ , Z+ 是正整数集。虽然 {ak}  的记号很常见,但这与无序的集合符号相同,容易引起混淆,因此这里使用记号 ⟨ak⟩ 。数列中的每一个数称为这个数列的“项”。a1 为数列的“第一项”、a2 为“第二项”、 an 则为“第 n 项”。项的总个数为数列的“项数”。数列中的第一项常称为“首项”,最后一项则称为“末项”。注意,有些数列会设为 ⟨ a k ⟩ k = 0 n {displaystyle leftlangle a_{k}rightrangle _{k=0}^{n}} ,其中 n ∈ N , N 是自然数集。换句话说,数列以第零项 a0 作为首项。一些有无穷个项的数列,比如全体正整数数列 ⟨ 1, 2, 3, 4, 5, ... ⟩ ,只有首项,没有末项。按照伯特兰·罗素在《西方哲学史》书中的说法,人们也可以定义没有首项的无穷数列:把正整数数列倒过来排列即可。但是这种没有首项的数列,在数学上没有大的用处。数列是特殊的序列,全部由数字组成。序列则范围更广,可以由有序的一系列数字、一系列函数、一系列矢量、一系列矩阵或一系列张量组成,等等。但有的微积分教材用序列一词来称呼数列,读者需要自己留意。数列可被视作函数 f : Z+ → Y,其中 Y 是包含数列中各个项的到达域。从这个角度看,数列能视作一种特殊的函数,称为“整标函数”。数列中各个项的和称为“级数”。但级数的概念的推广至数列以外的序列,比如函数序列的函数项级(英语:function series)。对于含有无穷多项的数列 ⟨ak⟩ ,我们可以为其定义“数列的极限”为常数 L:通常对第1项到第 n {displaystyle n} 项求和,记为 S n = ∑ k = 1 n a k {displaystyle S_{n}=sum _{k=1}^{n}a_{k}} 。此求和符号是由瑞士数学家莱昂哈德·欧拉使用和推广的。一个特殊数列求和:奇数数列。1,3,5,7,9,...。其和为项数 n {displaystyle n} 的平方。例如:1+3=22,1+3+5=32。通常,我们从实际问题中会先得到一个递推关系式,但是递推关系式可能会有点复杂,难以观察出数列中某一项的项数和具体大小之间的规律。所以我们希望寻找方法,以求化简数列的递推关系式,从而得到简单明了的一般项公式。一般项公式也叫通项公式。以下是一些常见的递推式化简方法。通项公式的求解在积分学、线性代数、概率论、组合数学、趣味数学、数学物理、数学建模、数值分析、分形等领域中都会遇到。遗憾的是,没有一种方法是万能的,所以通项公式的求解仍然是一个具有一定技巧性的工作。完全求不出通项公式、只能进行估算的情形也是经常出现的。求出该数列的前数项,归纳其通项公式,然后用数学归纳法证明公式正确。数学归纳法是最基本的方法,但对观察和归纳的能力要求比较高。如果猜不出规律,此法则无法使用。给定数列差 d n {displaystyle d_{n}} 时逐差全加,例如:给定数列比 r n {displaystyle r_{n}} 时逐差全乘,例如:如果已知数列和的公式,那么通项的求解非常容易。由 S n = ∑ k = 1 n a n {displaystyle S_{n}=sum _{k=1}^{n}a_{n}} 可知 S n − S n − 1 = a n {displaystyle S_{n}-S_{n-1}=a_{n}}把 S n {displaystyle S_{n}} 看成一个数列,可以先对 S n {displaystyle S_{n}} 进行求解,然后得出 a n {displaystyle a_{n}} 。换元法用于从形式上简化表达式,以突出问题的本质。换元法一般不单独使用,而是和其它方法结合使用。中学数学中常用的有对数换元法、三角函数换元法,还有用得很少的双曲函数换元法。对于形如齐次分式的递推关系,可利用不动点来推导。已知 A a n + 1 + B a n + C = 0 {displaystyle Aa_{n+1}+Ba_{n}+C=0} ,其中 A {displaystyle A} 、 B {displaystyle B} 、 C {displaystyle C} 都是常数,求 a n {displaystyle a_{n}} 。 求这类数列的通项公式,一般的方法就是将之化成一个新的等比数列。A ( a n + 1 + k ) = − B ( a n + k ) {displaystyle A(a_{n+1}+k)=-B(a_{n}+k)} 。 求出 k {displaystyle k} ,那么数列 a n + k {displaystyle {a_{n}+k}} 就是一个等比数列,从而求出通项公式。A a n + 1 + B a n + C = 0 {displaystyle Aa_{n+1}+Ba_{n}+C=0} A a n + B a n − 1 + C = 0 {displaystyle Aa_{n}+Ba_{n-1}+C=0} 两边相减就有: A ( a n + 1 − a n ) + B ( a n − a n − 1 ) = 0 {displaystyle A(a_{n+1}-a_{n})+B(a_{n}-a_{n-1})=0} ,如此就化成了一个等比数列。已知 A a n + 1 + B a n + C a n − 1 + D = 0 {displaystyle Aa_{n+1}+Ba_{n}+Ca_{n-1}+D=0} ,其中 A {displaystyle A} 、 B {displaystyle B} 、 C {displaystyle C} 、 D {displaystyle D} 都为常数,求 a n {displaystyle a_{n}} ; 与上述数列一样,它们一定可以化成下面的形式: A a n + 1 + E a n = k ( A a n + E a n − 1 ) − D {displaystyle Aa_{n+1}+Ea_{n}=k(Aa_{n}+Ea_{n-1})-D} 求出对应系数,于是就转化成了前面那种形式,然后就可以求出数列 A a n + E a n − 1 {displaystyle {Aa_{n}+Ea_{n-1}}} 的通项公式,然后求出 a n {displaystyle a_{n}} 的通项公式。实际上这是一种逐步化简的方法。其它常用方法包括导数求通项法、组合数学中的母函数方法、特征方程法,这些一般是在大学课程或是部分高中的进阶课程中学到。其中特征方程法专门用于线性递推关系式的化简,与求解线性微分方程的特征方程法非常类似。

相关

  • 金属金属是一种具有光泽(对可见光强烈反射)、富有延展性、容易导电、传热等性质的物质。金属的上述特质都跟金属晶体内含有自由电子有关。由于金属的电子倾向脱离,因此具有良好的导
  • 震颤颤抖或震颤(英语:Tremor)是身体部位因不自主肌肉收缩而造成的震动。最常发生在手部;通常是心脉所致,是正常生理现象。不过震颤严重者可能患有疾病。
  • 流鼻血鼻衄,俗称流鼻血、淌大寒,称鼻出血,是指由于鼻孔内的毛细血管脆弱,血管受到破坏后,血液从鼻孔里流出,是一种医学上的疑难病症。大多数是从一个鼻孔里出,但偶尔也会两个鼻孔一起出。
  • 布鲁夏斯基语布鲁夏斯基语或布鲁沙斯基语(burū́šaskī / بروشسکی‬),即勃律语,是一种中亚的语言。使用该语言的人口约有9.68万(2004年统计)。此种语言的使用者大部分为布鲁绍人,布鲁
  • FeS硫化亚铁(化学式:FeS)是铁(II)的硫化物,标准状态下为黑褐色难溶于水的六方晶系晶体,具有非计量性质。它易被空气氧化,生成高价的铁氧化物(如四氧化三铁)和硫。粉末状的硫化亚铁会发
  • 酱菜酱菜(又称虀)是用酱腌制保存并调味的蔬菜,现代也有用酱油、虾油等腌制的。另外,日常使用中,“酱菜”一词经常与腌菜混用。
  • 双头鹰双头鹰或作双头雕是一个常见于欧洲各国徽章和旗帜的图案。时至今日,双头鹰的图案还留在若干斯拉夫和东欧国家的国徽或旗帜上,而他们的双头鹰则是引用自拜占庭帝国的国徽。今日
  • 按大学各大学诺贝尔奖得主列表详列了各个与诺贝尔奖得主有学术关联的大学。自1901年起至2019年,诺贝尔奖(包括诺贝尔经济学奖)共颁给过919名个人和24个机构。 本列表对每个诺贝尔奖得
  • 电子束光刻电子束曝光(electron beam lithography)指使用电子束在表面上制造图样的工艺,是光刻技术的延伸应用。光刻技术的精度受到光子在波长尺度上的散射影响。使用的光波长越短,光刻能
  • 曾祖母曾祖父母(英语:Great grandparents)是祖父的父亲母亲;又称爷爷的父亲母亲。自己则分别是曾祖父母的曾孙子或曾孙女。在北方地区习惯称呼曾祖父称为“太爷爷”,曾祖母为“太奶奶”