首页 >
数列
✍ dations ◷ 2025-09-18 15:30:18 #数列
数列(英语:number sequence)是由数字组成的序列,也即是全序排列的多个数。数列及其相关术语常用于有关递推规律的研究。数列也是级数理论的基本概念。数列是一列两个以上按顺序排列的数,所组成的序列,记为 .mw-parser-output .serif{font-family:Times,serif}⟨ak⟩ 、 {ak} 或 (ak):其中 n ∈ Z+ , Z+ 是正整数集。虽然 {ak} 的记号很常见,但这与无序的集合符号相同,容易引起混淆,因此这里使用记号 ⟨ak⟩ 。数列中的每一个数称为这个数列的“项”。a1 为数列的“第一项”、a2 为“第二项”、 an 则为“第 n 项”。项的总个数为数列的“项数”。数列中的第一项常称为“首项”,最后一项则称为“末项”。注意,有些数列会设为
⟨
a
k
⟩
k
=
0
n
{displaystyle leftlangle a_{k}rightrangle _{k=0}^{n}}
,其中 n ∈ N , N 是自然数集。换句话说,数列以第零项 a0 作为首项。一些有无穷个项的数列,比如全体正整数数列 ⟨ 1, 2, 3, 4, 5, ... ⟩ ,只有首项,没有末项。按照伯特兰·罗素在《西方哲学史》书中的说法,人们也可以定义没有首项的无穷数列:把正整数数列倒过来排列即可。但是这种没有首项的数列,在数学上没有大的用处。数列是特殊的序列,全部由数字组成。序列则范围更广,可以由有序的一系列数字、一系列函数、一系列矢量、一系列矩阵或一系列张量组成,等等。但有的微积分教材用序列一词来称呼数列,读者需要自己留意。数列可被视作函数 f : Z+ → Y,其中 Y 是包含数列中各个项的到达域。从这个角度看,数列能视作一种特殊的函数,称为“整标函数”。数列中各个项的和称为“级数”。但级数的概念的推广至数列以外的序列,比如函数序列的函数项级(英语:function series)。对于含有无穷多项的数列 ⟨ak⟩ ,我们可以为其定义“数列的极限”为常数 L:通常对第1项到第
n
{displaystyle n}
项求和,记为
S
n
=
∑
k
=
1
n
a
k
{displaystyle S_{n}=sum _{k=1}^{n}a_{k}}
。此求和符号是由瑞士数学家莱昂哈德·欧拉使用和推广的。一个特殊数列求和:奇数数列。1,3,5,7,9,...。其和为项数
n
{displaystyle n}
的平方。例如:1+3=22,1+3+5=32。通常,我们从实际问题中会先得到一个递推关系式,但是递推关系式可能会有点复杂,难以观察出数列中某一项的项数和具体大小之间的规律。所以我们希望寻找方法,以求化简数列的递推关系式,从而得到简单明了的一般项公式。一般项公式也叫通项公式。以下是一些常见的递推式化简方法。通项公式的求解在积分学、线性代数、概率论、组合数学、趣味数学、数学物理、数学建模、数值分析、分形等领域中都会遇到。遗憾的是,没有一种方法是万能的,所以通项公式的求解仍然是一个具有一定技巧性的工作。完全求不出通项公式、只能进行估算的情形也是经常出现的。求出该数列的前数项,归纳其通项公式,然后用数学归纳法证明公式正确。数学归纳法是最基本的方法,但对观察和归纳的能力要求比较高。如果猜不出规律,此法则无法使用。给定数列差
d
n
{displaystyle d_{n}}
时逐差全加,例如:给定数列比
r
n
{displaystyle r_{n}}
时逐差全乘,例如:如果已知数列和的公式,那么通项的求解非常容易。由
S
n
=
∑
k
=
1
n
a
n
{displaystyle S_{n}=sum _{k=1}^{n}a_{n}}
可知
S
n
−
S
n
−
1
=
a
n
{displaystyle S_{n}-S_{n-1}=a_{n}}把
S
n
{displaystyle S_{n}}
看成一个数列,可以先对
S
n
{displaystyle S_{n}}
进行求解,然后得出
a
n
{displaystyle a_{n}}
。换元法用于从形式上简化表达式,以突出问题的本质。换元法一般不单独使用,而是和其它方法结合使用。中学数学中常用的有对数换元法、三角函数换元法,还有用得很少的双曲函数换元法。对于形如齐次分式的递推关系,可利用不动点来推导。已知
A
a
n
+
1
+
B
a
n
+
C
=
0
{displaystyle Aa_{n+1}+Ba_{n}+C=0}
,其中
A
{displaystyle A}
、
B
{displaystyle B}
、
C
{displaystyle C}
都是常数,求
a
n
{displaystyle a_{n}}
。
求这类数列的通项公式,一般的方法就是将之化成一个新的等比数列。A
(
a
n
+
1
+
k
)
=
−
B
(
a
n
+
k
)
{displaystyle A(a_{n+1}+k)=-B(a_{n}+k)}
。
求出
k
{displaystyle k}
,那么数列
a
n
+
k
{displaystyle {a_{n}+k}}
就是一个等比数列,从而求出通项公式。A
a
n
+
1
+
B
a
n
+
C
=
0
{displaystyle Aa_{n+1}+Ba_{n}+C=0}
A
a
n
+
B
a
n
−
1
+
C
=
0
{displaystyle Aa_{n}+Ba_{n-1}+C=0}
两边相减就有:
A
(
a
n
+
1
−
a
n
)
+
B
(
a
n
−
a
n
−
1
)
=
0
{displaystyle A(a_{n+1}-a_{n})+B(a_{n}-a_{n-1})=0}
,如此就化成了一个等比数列。已知
A
a
n
+
1
+
B
a
n
+
C
a
n
−
1
+
D
=
0
{displaystyle Aa_{n+1}+Ba_{n}+Ca_{n-1}+D=0}
,其中
A
{displaystyle A}
、
B
{displaystyle B}
、
C
{displaystyle C}
、
D
{displaystyle D}
都为常数,求
a
n
{displaystyle a_{n}}
;
与上述数列一样,它们一定可以化成下面的形式:
A
a
n
+
1
+
E
a
n
=
k
(
A
a
n
+
E
a
n
−
1
)
−
D
{displaystyle Aa_{n+1}+Ea_{n}=k(Aa_{n}+Ea_{n-1})-D}
求出对应系数,于是就转化成了前面那种形式,然后就可以求出数列
A
a
n
+
E
a
n
−
1
{displaystyle {Aa_{n}+Ea_{n-1}}}
的通项公式,然后求出
a
n
{displaystyle a_{n}}
的通项公式。实际上这是一种逐步化简的方法。其它常用方法包括导数求通项法、组合数学中的母函数方法、特征方程法,这些一般是在大学课程或是部分高中的进阶课程中学到。其中特征方程法专门用于线性递推关系式的化简,与求解线性微分方程的特征方程法非常类似。
相关
- RTA肾小管性酸中毒(英语:Renal tubular acidosis、英语:RTA)涉及在体内酸的积累酸中毒(acidosis)、起于肾脏未能适当地酸化尿液而造成的医学疾病。当血液通过肾脏的过滤,滤液穿过
- 医疗保险中华人民共和国医疗保险是指中华人民共和国的国营医疗保险制度,属于中华人民共和国医疗卫生一环。整体中国医保与户籍制度有深度挂勾,首先是根据身份别,城镇居民户口和农村居民
- 雕塑古希腊雕刻是古希腊中闻名于世的其中一项艺术,发展时间大约于公元前10世纪至公元前1世纪。古希腊雕刻特点在于富于理想主义、质朴,注重共性、雅致,简而言之便是返璞归真,因此在
- 无套性交无套性交(bareback,简称BB),意思为不戴安全套而进行的进入性性行为,泛指任何不安全的性行为。在艾滋病于1980年代被发现以前,一些与同性交好的男性(MSM)肛交时并没有口头上制定佩带
- 三苯氧胺诺瓦得士或太莫西芬(Tamoxifen,简称TMX),常见商品名Nolvadex,可用于治疗或预防乳癌,目前仍在研究本品对于其他癌症的效果。本品可用来治疗 马-亚二氏症(英语:Albright syndrome)。诺瓦
- 磷光磷光是一种缓慢发光的光致发光现象。当某种常温物质经某种波长的入射光(通常是紫外线或X射线)照射,吸收光能后进入激发态(通常具有和基态不同的自旋多重度),然后缓慢地退激发并发
- 直接起飞直接起飞(Direct ascent)是美国太空计划登月计划阶段被提出的一种方案。直接起飞提出由一个巨大的新星火箭携带一艘航天器,直接飞往月球;火箭在月球降落,任务完成后再次起飞,飞回
- 弗吉尼亚公司弗吉尼亚公司(英语:Virginia Company)是由一些英国商人在1606年成立,由于西班牙贵族和皇室在中南美洲发现大量金子而变得极端富裕,使整个欧洲都相信美洲,特别是北美洲——一个没白
- 地理极点以下为中华人民共和国地理极点列表。
- 重氮试剂重氮盐有时也称“重氮化合物”, 是一类通式为R-N2+X−的有机化合物,R指有机基团(如烷基或芳基),X指任何阴离子,通常为卤素离子。重氮盐是无色结晶固体,爆炸性很强,干燥情况下不稳定,