表面电荷

✍ dations ◷ 2025-04-26 12:20:41 #电学,物理化学

表面电荷即在界面处存在的电荷。有很多过程可以使表面带电,比如离子吸附、质子化或去质子化、表面的化学基团发生电离、外加电场。表面电荷会产生电场,使粒子之间有排斥或吸引的相互作用,这是很多胶体性质的成因。

物体处于流体中一般都会带上电荷。几乎所有的流体都会含有离子,包括正离子(阳离子)和负离子(阴离子),离子与表面会有相互作用,导致有离子吸附到物体表面。

另外一个表面电荷的机制是,表面的化学基团发生电离。

表面电荷密度定义为电荷数目, q,与表面的面积, A,之比:

根据高斯定律,处于静电平衡下的导体,内部没有电荷,只在导体表面有电荷分布,表面电荷密度为

其中, E {\displaystyle E} 为导体的电荷产生的电场, ϵ 0 {\displaystyle \epsilon _{0}} 为真空介电常数。该关系只对无限大导体表面成立,或距导体无限小处成立。

浸于电解质溶液中的表面往往带有电荷,常见的机制是离子吸附。 带电表面附近会有反离子富集,形成所谓双电层结构。

表面的化学基团如果含氧原子或氮原子,在水溶液中可能发生质子化或去质子化,使表面带上电荷,此时,表面带电受溶液中pH值的影响。在某一pH值时,表面静电荷为零,这一pH值叫做零电荷点(point of zero charge,PZC)。一些常见物质的零电荷点列于左边表格中。

界面是两相(比如固体和液体)的边界。 界面电势就是界面上的电荷的电势。比如蛋白质表面的一些氨基酸,比如谷氨酸在pH值大于4.1时会发生显著电离,使蛋白质带上电荷,因此会造成界面电势。界面电势可以解释双电层的形成,在动电现象(英语:Electrokinetic phenomena)研究中也是一个非常有用的概念。下面简要描述双电层的理论。

双电层模型是赫尔曼·冯·亥姆霍兹最早引入的。亥姆霍兹模型假设,溶液中只有电解质,电极附近没有化学反应,离子与电极之间只有静电相互作用,因为电极上带有电荷。为了使界面呈电中性,要求电极表面附近,离子有特别的分布,形成一层电荷,中和电极表面上的电荷。离子与电极之间的距离,最小为离子的半径加上离子的溶剂化球半径。即亥姆霍兹模型等价于一平面电容器,两平面之间电势与二者间距呈线性关系。

亥姆霍兹模型是描述带电界面的基础,有几个重要因素没有考虑:离子的扩散与混合、离子可能的吸附、溶剂偶极矩与电极之间的相互作用。

古依-恰普曼理论描述了静态表面电荷对表面电势的影响。 古依认为,带电表面的界面电势由表面上的电荷及溶液中等量的反离子来确定。 反离子不是仅仅束缚在带电表面上,而是在表面附近呈一弥散的分布。反离子浓度, C {\displaystyle C} ,满足如下关系:

C o {\displaystyle C_{o}} 为反离子在电势为零处的浓度, z 为离子的离子价, e 为一个质子的电量, k 为 波耳兹曼常数, ψ 为表面附近溶液中的电势分布。

古依-恰普曼理论缺陷在于,假设摩尔浓度与活度相等,并假设离子为点电荷。

表面电荷与表面电势由格雷厄姆方程给出:

其中, σ {\displaystyle \sigma } 为表面电荷密度。

在高温极限下, sinh ( x ) {\displaystyle \sinh(x)} 可以展开成 sinh ( x ) {\displaystyle \sinh(x)} = x + x 3 / 3 ! + . . . {\displaystyle x+x^{3}/3!+...} {\displaystyle \approx } x {\displaystyle x} λ D = ( 8 C 0 ϵ ϵ 0 k B T ) 1 / 2 {\displaystyle \lambda _{D}=(8C_{0}\epsilon \epsilon _{0}k_{B}T)^{-1/2}} 为德拜长度,于是,得

σ = ϵ ϵ 0 ψ 0 λ D {\displaystyle \sigma ={\frac {\epsilon \epsilon _{0}\psi _{0}}{\lambda _{D}}}}

施特恩模型本质上是亥姆霍兹模型和古依-恰普曼模型的结合。施特恩模型里,离子有一定大小,不能无限靠近带电表面,间距至少为纳米量级。距离带电表面最近一层离子称为施特恩层。离子分布受带电表面影响的最大距离处为滑动面,在滑动面以外,为本体溶液。滑动面处电势叫做界达电位,它在物理上比表面电势更有意义。

带电表面极其重要,有着广泛的应用。比如,溶液中胶体要保持分散状态完全依赖于胶体之间的排斥相互作用。如果排斥力被减弱,比如加入盐或高分子链,胶体粒子可能不会保持悬浮,会发生絮凝。

动电现象指双电层造成的各种效应,一个突出的例子是电泳,悬浮在介质中的带电粒子在外加电场驱动下运动。 电泳广泛用于生物化学中,根据分子的大小和电荷区分分子,比如蛋白质。其他例子包括电渗流、 沉降电势(英语:sedimentation potential) 和 流动电势(英语:Streaming potential)。

蛋白质是带电的生物分子,带电情况对溶液中pH值非常敏感。酶蛋白和跨膜蛋白的活性依赖于带电情况,蛋白质活性位点必须有合适的表面电荷,才能与具体基底结合。

相关

  • 杜鹃杜鹃有以下的含义:
  • 奎德克维德(德语:Ludwig Quidde,1858年3月23日-1941年3月4日),德国历史学家、和平主义者,因对皇帝威廉二世的尖锐批评而闻名。他在1927年与法国人费迪南·比松一同获得诺贝尔和平奖。
  • 关渡宫坐标:25°7′4.3″N 121°27′49.6″E / 25.117861°N 121.463778°E / 25.117861; 121.463778关渡宫,位于中华民国(台湾)台北市北投区关渡,俗称关渡妈祖宫、关渡天后宫。 为主祀
  • 床虱床虱,俗称臭虫,是一种很小及难以捕捉的寄生昆虫,属于臭虫科(Cris),是半翅目异翅亚目臭虫下目臭虫总科的生物种类。臭虫有一对臭脚,能分泌一种异常臭液,此种臭液有防御天敌和促进交配
  • 集团军和平期间罕见军事强国有实力编制普通国家有实力编制军团(英语:Army,又称Field Army、野战军团、中国大陆常译为集团军)是由两个到三个军所组成的军事单位,隶属于集团军群(英语:Army
  • 蓝烟铁路.mw-parser-output .RMbox{box-shadow:0 2px 2px 0 rgba(0,0,0,.14),0 1px 5px 0 rgba(0,0,0,.12),0 3px 1px -2px rgba(0,0,0,.2)}.mw-parser-output .RMinline{float:none
  • 俄罗斯联邦区域发展部俄罗斯联邦区域发展部(俄语:Министерство регионального развития Российской Федерации – Минрегион Ро
  • 威廉·文德尔班威廉·文德尔班(Wilhelm Windelband,1848年5月11日-1915年10月22日),德国新康德主义哲学家。文德尔班生于波茨坦,大学时曾于耶拿、柏林、哥廷根就读,学习自然科学、医学、历史学与
  • 阿廖娜·科斯托娜娅阿廖娜·谢尔盖耶芙娜·科斯托娜娅(俄语:Алёна Сергеевна Косторная,2003年8月24日-),俄罗斯花式滑冰运动员,为2017-2018年度青年组大奖赛总决赛银牌得主、
  • 所有演示之母1968年12月9日道格拉斯·恩格尔巴特在旧金山召开的计算机协会暨电气电子工程师学会(ACM/IEEE)秋季联合会议(英语:Joint Computer Conference)上进行了一场具有里程碑意义的计算机