费曼图

✍ dations ◷ 2025-12-05 08:34:11 #费曼图
费曼图(英语:Feynman diagram)是美国物理学家理查德·费曼在处理量子场论时提出的一种形象化的方法,描述粒子之间的相互作用、直观地表示粒子散射、反应和转化等过程。使用费曼图可以方便地计算出一个反应过程的跃迁概率。在费曼图中,粒子用线表示,费米子一般用实线,光子用波浪线,玻色子用虚线,胶子用圈线。一线与另一线的连接点称为顶点。费曼图的横轴一般为时间轴,向右为正,向左代表初态,向右代表末态。与时间轴方向相同的箭头代表正费米子,与时间轴方向相反的箭头表示反费米子。两个粒子的相互作用量由反应截面积所量化,其大小取决于它们的碰撞,该相互作用发生的概率尤其重要。如果该相互作用的强度不太大(即是能够用摄动理论解决),这反应截面积(或更准确来说是对应的时间演变算子、分布函数或S矩阵)能够用一系列的项(戴森级数(英语:Dyson series))所表示,这些项能描述一段短时间所发生的故事,像以下的例子:这故事能够以图来表示,这一般来说要比记起对应戴森级数的数学公式要容易得多。这种图被称为费曼图。它们在戴森级数迅速趋向极限时才有意义。由于它们能够说简易的故事,而且又跟早期的气泡室实验相似,所以费曼图变得非常普及。粒子物理学中,计算散射反应截面积的难题简化成加起所有可能存在的居间态振幅(每一个对应摄动理论又称戴森级数的一个项)。用费曼图表示这些状态以,比了解当年冗长计算容易得多。从该系统的基础拉格朗日量能够得出费恩曼法则,费恩曼就是用该法则表明如何计算图中的振幅。每一条内线对应虚粒子的分布函数;每一个线相遇顶点给出一个因子和来去的两线,该因子能够从相互作用项的拉格朗日量中得出,而线则约束了能量、动量和自旋。费曼图因此是出现在戴森级数每一个项的因子的符号写法。但是,作为微扰的展开式,费曼图不能包含非微扰效应。除了它们在作为数学技巧的价值外,费曼图为粒子的相互作用提供了深入的科学理解。粒子会在每一个可能的方式下相互作用:实际上,居间的虚粒子超越光速是允许的。(这是基于测不准原理,因深奥的理由而不违反相对论;事实上,超越光速对保留相对性时空的偶然性有帮助。)每一个终态的概率然后就从所有如此的概率中得出。这跟量子力学的泛函积分表述有密切关系,该表述(路径积分表述)也是由费曼发明的。如此计算如果在缺少经验的情况下使用,通常会得出图的振幅为无穷大,这个答案在物理理论中是不能接受的。问题在于粒子自身的相互作用被错误地忽视了。重整化的技巧(是由费曼、施温格和朝永所开发的)弥补了这个效应并消除了麻烦的无穷大项。经过这样的重整化后,用费曼图做的计算通常能与实验结果准确地吻合。费曼图及路径积分法亦被应用于统计力学中。默里·盖尔曼一直将费曼图称为斯蒂克尔堡图(Stückelberg diagrams),因为瑞士物理学家厄恩斯特·斯蒂克尔堡(Ernst Stückelberg)发明了一个相近的图。历史上他们也曾被叫成费恩曼-戴森图或戴森图。右图为β衰变的费曼图。图中的直线代表费米子,而波浪线则代表虚玻色子。在本例中,图被设定在流形时空中,y坐标为时间而x坐标为空间;x坐标亦代表了某些相互作用(考虑碰撞)的“地点”。由于时间朝着y轴方向,所以中微子是向着时间方向行进的;但费米子可以被视为其向时间后方移动的反粒子,因为数学上这两个概念没有分别。这适用于所有粒子和反粒子。在量子电动力学中,有两个场标记,叫“电子”和“光子”。“电子”有一定方向而“光子”无固定方向。当中只有一种相互作用,用“γ”标记,其三度分别为“光子”、“电子”“头”和“电子”“尾”。

相关

  • FMA解剖学基础模型,又称解剖学基础模型本体(Foundational Model of Anatomy Ontology, FMA),是解剖学领域的一部参考本体。它是对生物体典型的表现型结构的符号表达形式;FMA是一部由
  • 匠人匠人(学名:Homo ergaster,来自希腊文ἔργον,意为“工作”)是属于人科的已经灭绝的物种,生存于180-130万年前的东非及南部非洲,处于上新世末期到更新世初期。目前对于匠人的分类
  • 异常异常行为(或功能障碍行为)是一种行为特征,归因于那些被认为是罕见或功能障碍的病症。由社会不接受的行为组成,行为在非典型或不寻常的情况下被认为是不正常的,并且导致个体活动受
  • 心室中膈缺损心室中膈缺损(英语:ventricular septal defect,简称:VSD),又称心室中隔缺损、心室间隔缺损、室间隔缺损,列为心脏病之一,当然中隔缺损还有分为心室中隔缺损、心房中隔缺损等等。生出
  • 美国证券交易委员会美国证券交易委员会(United States Securities and Exchange Commission,缩写:SEC),常被称为证管会,是根据《1934年证券交易法(英语:Securities Exchange Act of 1934)》成立、直属美
  • 法兰西第三共和国法兰西第三共和国(法语:La Troisième République)是在1870年至1940年统治法国的政权,是首个稳固建立的共和政府。共和国采用议会制民主模式并在1870年9月4日成立,在第二帝国因
  • 罗刹罗刹(梵语:राक्षस,转写:Rākṣasa,巴利语:Rakkhasa),又作罗刹姿、罗叉娑、罗刹娑、罗乞察娑、阿落刹娑等,意译为可畏、速疾鬼、护者。罗刹女称罗叉私、罗刹斯(梵语:Rākṣasī)。
  • 马桑塔省马桑塔省是西非国家畿内亚的33个省之一,位于该国东南部,由恩泽雷科雷大区负责管辖,首府设于马桑塔,北临基西杜古省和凯鲁阿内省,东接贝拉省和恩泽雷科雷省,南毗约穆省,西邻利比里亚
  • INF2· cytoplasm · endoplasmic reticulum· actin cytoskeleton organization · regulation of cellular component size逆霍明2(INF2、Inverted formin-2)是在人体内由IN
  • 经验科学经验主义(英语:Empiricism)又作经验论,通常指相信现代科学方法,相信证据,着重认为理论应建立于对于事物的观察,而不是直觉或迷信。意即通过实验研究而后进行理论归纳优于单纯的逻辑