费曼图

✍ dations ◷ 2025-06-28 05:36:03 #费曼图
费曼图(英语:Feynman diagram)是美国物理学家理查德·费曼在处理量子场论时提出的一种形象化的方法,描述粒子之间的相互作用、直观地表示粒子散射、反应和转化等过程。使用费曼图可以方便地计算出一个反应过程的跃迁概率。在费曼图中,粒子用线表示,费米子一般用实线,光子用波浪线,玻色子用虚线,胶子用圈线。一线与另一线的连接点称为顶点。费曼图的横轴一般为时间轴,向右为正,向左代表初态,向右代表末态。与时间轴方向相同的箭头代表正费米子,与时间轴方向相反的箭头表示反费米子。两个粒子的相互作用量由反应截面积所量化,其大小取决于它们的碰撞,该相互作用发生的概率尤其重要。如果该相互作用的强度不太大(即是能够用摄动理论解决),这反应截面积(或更准确来说是对应的时间演变算子、分布函数或S矩阵)能够用一系列的项(戴森级数(英语:Dyson series))所表示,这些项能描述一段短时间所发生的故事,像以下的例子:这故事能够以图来表示,这一般来说要比记起对应戴森级数的数学公式要容易得多。这种图被称为费曼图。它们在戴森级数迅速趋向极限时才有意义。由于它们能够说简易的故事,而且又跟早期的气泡室实验相似,所以费曼图变得非常普及。粒子物理学中,计算散射反应截面积的难题简化成加起所有可能存在的居间态振幅(每一个对应摄动理论又称戴森级数的一个项)。用费曼图表示这些状态以,比了解当年冗长计算容易得多。从该系统的基础拉格朗日量能够得出费恩曼法则,费恩曼就是用该法则表明如何计算图中的振幅。每一条内线对应虚粒子的分布函数;每一个线相遇顶点给出一个因子和来去的两线,该因子能够从相互作用项的拉格朗日量中得出,而线则约束了能量、动量和自旋。费曼图因此是出现在戴森级数每一个项的因子的符号写法。但是,作为微扰的展开式,费曼图不能包含非微扰效应。除了它们在作为数学技巧的价值外,费曼图为粒子的相互作用提供了深入的科学理解。粒子会在每一个可能的方式下相互作用:实际上,居间的虚粒子超越光速是允许的。(这是基于测不准原理,因深奥的理由而不违反相对论;事实上,超越光速对保留相对性时空的偶然性有帮助。)每一个终态的概率然后就从所有如此的概率中得出。这跟量子力学的泛函积分表述有密切关系,该表述(路径积分表述)也是由费曼发明的。如此计算如果在缺少经验的情况下使用,通常会得出图的振幅为无穷大,这个答案在物理理论中是不能接受的。问题在于粒子自身的相互作用被错误地忽视了。重整化的技巧(是由费曼、施温格和朝永所开发的)弥补了这个效应并消除了麻烦的无穷大项。经过这样的重整化后,用费曼图做的计算通常能与实验结果准确地吻合。费曼图及路径积分法亦被应用于统计力学中。默里·盖尔曼一直将费曼图称为斯蒂克尔堡图(Stückelberg diagrams),因为瑞士物理学家厄恩斯特·斯蒂克尔堡(Ernst Stückelberg)发明了一个相近的图。历史上他们也曾被叫成费恩曼-戴森图或戴森图。右图为β衰变的费曼图。图中的直线代表费米子,而波浪线则代表虚玻色子。在本例中,图被设定在流形时空中,y坐标为时间而x坐标为空间;x坐标亦代表了某些相互作用(考虑碰撞)的“地点”。由于时间朝着y轴方向,所以中微子是向着时间方向行进的;但费米子可以被视为其向时间后方移动的反粒子,因为数学上这两个概念没有分别。这适用于所有粒子和反粒子。在量子电动力学中,有两个场标记,叫“电子”和“光子”。“电子”有一定方向而“光子”无固定方向。当中只有一种相互作用,用“γ”标记,其三度分别为“光子”、“电子”“头”和“电子”“尾”。

相关

  • 发病率发病率(英语:incidence rate)在流行病学中是指一定时期内特定人群新发生某一疾病的比率,可以用来测定发病风险。例如,对于一个包含1000人的未患病的风险人群进行为期两年的观察之
  • 氨基胺类(英语:amine)是氨分子(NH3)中的氢被烃基取代后形成的一类有机化合物,简称“胺”。不建议将“胺”(amine)写成“氨”(ammonia),两者意义与英文名称不同。氨基(-NH2、-NHR、-NR2)是胺的官
  • 法尤姆省法尤姆省(阿拉伯语:محافظة الفيوم‎),是埃及的一个省,位于该国中部。首府法尤姆。面积1,827平方公里,人口2,512,792人(2006年统计)。
  • 布尔乔治·布尔(英语:George Boole,1815年11月2日-1864年12月8日,英语发音 ),英格兰数学家和哲学家,数理逻辑学先驱。乔治·布尔生于英格兰的林肯郡。在备课的时候,布尔不满意当时的数学
  • 健康教育健康教育,是健康教育学的一个核心概念,是旨在帮助对象人群或个体改善健康相关行为的系统的社会活动;是在调查研究的基础上采用健康信息传播等干预措施促使人群或个体自觉采纳有
  • 生命系统中的旋转运动能够进行滚动运动的有机体是存在的。然而,尽管轮子和螺旋桨之类的结构对于交通工具来说必不可少,这类结构对于生命体的运动似乎并无重要意义(一些特殊的鞭毛是例外,它们能像开瓶
  • 朱彧朱彧(?-?),字无惑,晚号萍洲老圃,北宋湖州乌程(今浙江湖州)人。其父朱服,官至“广州帅”。朱彧生年不详,幼时依母胡氏居常州,后随父寓居开封各地,崇宁初年至广州,曾见到苏轼。晚年在湖北黄冈
  • 和平期间罕见军事强国有实力编制普通国家有实力编制连(英语:Company)是现代陆军、海军陆战队等军种的一种编制,由若三个排到六个排组成,人数大约在80-150人之间。譬如在三三制的
  • 奈姆蒂姆萨夫一世奈姆蒂姆萨夫一世(Merenre Nemtyemsaf I)(或译为麦伦拉一世、莫润尔一世)是埃及第六王朝第四位法老,在位超过10年。早期学者相信他即位前曾与其父佩皮一世共同执政短时间。1995年
  • 义大世界购物广场义大世界购物广场(E-DA Outlet Mall)位于台湾高雄市大树区,为义大世界的一部分,为台湾首座的名牌折扣商场(Outlet mall),营业面积广达约58,000坪,分为A区、B区、C区,超过700个品牌进