四维力

✍ dations ◷ 2025-07-06 08:30:29 #狭义相对论,力

四维力(英语:four-force)是古典力学中的力物理量在相对论中对应的四维版本。

设有一不变质量为的粒子( > 0),其四维动量 P {\displaystyle \mathbf {P} } 为光速, u {\displaystyle \mathbf {u} } 乃是寻常概念中的三维空间速度。

而四维力 F {\displaystyle \mathbf {F} } 的定义则为四维动量对粒子原时的微分:

将牛顿第二定律扩充,我们可以将四维力与四维加速度 A {\displaystyle \mathbf {A} } 作关联:

在这里可得如下关系式:

以及

上述 u {\displaystyle \mathbf {u} } p {\displaystyle \mathbf {p} } f {\displaystyle \mathbf {f} } 为三维向量,分别描述粒子的速度、动量与作用力。

在广义相对论中,四维力与四维加速度的关系式不变,然而四维力与四维动量的关系则需从对原时的一般导数改成协变导数:

此外,我们亦可透过座标转换的观念来推导不同座标系之间的力。设有一座标系而粒子在此座标系中暂时静止,假设我们知道的力的正确表示式,则我们可以透过座标转换得到另一个座标系中的力的表示式。在狭义相对论中,这个座标变换是劳仑兹变换;在广义相对论中,则是广义座标变换。

考虑四维力 F μ = ( F 0 , F ) {\displaystyle F^{\mu }=(F^{0},{\textbf {F}})} 作用在一质量为 m {\displaystyle m} 的粒子,此粒子在一座标系统中暂时静止。

相对论中的力 f μ {\displaystyle f^{\mu }} 在另个以固定相对速度 v {\displaystyle v} 的座标系中遵守劳仑兹变换: f = F + ( γ 1 ) v v F v 2 {\displaystyle {\mathbf {f} }={\mathbf {F} }+(\gamma -1){\mathbf {v} }{{\mathbf {v} }\cdot {\mathbf {F} } \over v^{2}}}

其中 β = v / c {\displaystyle {\boldsymbol {\beta }}=\mathbf {v} /c} 为速度除以光速。

广义相对论中,四维力表示式变成:

其中 D / d τ {\displaystyle D/d\tau } 为协变导数。运动方程式变成: m d 2 x μ d τ 2 = f μ m Γ ν λ μ d x ν d τ d x λ d τ {\displaystyle m{d^{2}x^{\mu } \over d\tau ^{2}}=f^{\mu }-m\Gamma _{\nu \lambda }^{\mu }{dx^{\nu } \over d\tau }{dx^{\lambda } \over d\tau }}

其中 Γ ν λ μ {\displaystyle \Gamma _{\nu \lambda }^{\mu }} 为克里斯多福符号。若无外加力,则变成弯曲时空中的测地线方程式。上式中的第二项所扮演的角色是重力场所造成的“力”。

f f α {\displaystyle f_{f}^{\alpha }} 是自由落体参考系 ξ α {\displaystyle \xi ^{\alpha }} 之中力的正确表示式,我们可以使用等效原理来描写任意座标系 x μ {\displaystyle x^{\mu }} 之中的四维力:

f μ = x μ ξ α f f α . {\displaystyle f^{\mu }={\partial x^{\mu } \over \partial \xi ^{\alpha }}f_{f}^{\alpha }.}

狭义相对论中,四维劳仑兹力(电磁场对带电粒子作用的四维力)可以表示为:

其中

相关

  • 乳头瘤病毒科乳头瘤病毒科(Papillomaviridae)是双链DNA病毒的一科,该类病毒会导致肿瘤,但大多情况不会成为癌症,仅有少数种类会导致子宫颈癌。下有一属:医学导航: 病毒病病毒(蛋白质)/分类cutn
  • 太阳耀斑耀斑是在太阳的盘面或边缘观测到的突发闪光现象,它会释放出高达6 × 1025焦耳的巨大能量(大约是太阳每秒钟释放总能量的六倍,或相当于160,000,000,000百万吨TNT,超过舒梅克-李维
  • 马尔可夫链蒙特卡洛马尔可夫链蒙特卡洛(英语:Markov chain Monte Carlo,MCMC)方法(含随机游走蒙特卡洛方法)是一组用马氏链从随机分布取样的算法,之前步骤的作为底本。步数越多,结果越好。创建一个具有
  • ɽ̊r̥清卷舌颤音是一个辅音,国际音标(IPA)写作⟨ɽ̊r̥⟩。该音在迪维西语中作为/ʂ/的同位异音使用。虽然此卷舌音由舌下(sub-apical)的位置开始,但在颤动时会使舌尖逐渐移动到牙槽嵴
  • 子爵子爵是中国古代爵位名,一些邻近国家受中国影响也以此为爵位名。欧洲中世纪以后,在中文里也用“子爵”来翻译欧洲贵族爵位中相应等级的称号(例如英语Viscount、法语Vicomte等,和
  • CCMD-3中国精神障碍分类与诊断标准,简称CCMD。现行的分类与诊断标准为《中国精神疾病障碍与诊断标准第3版(CCMD-3)》,由卫生部科学研究基金资助,通过41家精神卫生机构负责对24种精神
  • ViVa TV美好家庭购物股份有限公司(英语:Shopnet Homeshopping Co., Ltd.,缩写:ViVa TV,简称:美好家庭购物)为台湾的电视购物频道。
  • Yukon育空(英语、法语:Yukon)是加拿大三个地区/领地之一,位于加拿大的西北方。1898年6月13日,育空正式加入加拿大联邦。根据2016年的人口普查,育空人口有35,874人,其中25,085人,70%的人居
  • 漆多俊漆多俊(1938年-),中国当代著名经济法学家。武汉大学、中南大学、厦门大学博士生导师,中南大学终身教授。他是中国法学会理事、中国经济法研究会副会长、湖北省经济法研究会会长、
  • 柏氏蝴蝶鱼柏氏蝴蝶鱼,又称波斯蝴蝶鱼,为辐鳍鱼纲鲈形目蝴蝶鱼科的其中一种。本鱼分布于西太平洋区,包括菲律宾、马来西亚、印尼、密克罗尼西亚、帕劳、东加、新几内亚等海域。水深40-80米