首页 >
酯质
✍ dations ◷ 2024-11-03 04:18:53 #酯质
脂类(英语:Lipid),又称脂质,这是一类不溶于水而易溶于脂肪溶剂(醇、醚、氯仿、苯)等非极性有机溶剂,由脂肪酸与醇作用脱水缩合生成的酯及其衍生物统称为脂类,其中包括脂肪、蜡、类固醇、脂溶性维生素(如维生素A,D,E和K)、单酸甘油酯(英语:Monoglyceride)、二酸甘油酯、磷脂等。它的主要生理功能包括储存能量、构成细胞膜以及膜的讯息传导等。如今,脂类已经被用于美容和食品工业,以及纳米技术。脂质可以广义定义为疏水性或双亲性小分子;某些脂质因为其双亲性的特质(兼具亲水性与疏水性),能在水溶液环境中形成囊泡、脂质体或膜等构造。生物体内的脂质完全或部分源自两种截然不同的生物次单元:酮酸基与异戊二烯。由此,脂质可以概分为八类:脂肪酸、甘油酯、甘油磷脂、鞘脂(神经脂质)、糖脂质(英语:Saccharolipid)、聚酮类(由酮乙基次单元聚合而成)、固醇脂类,以及孕烯醇酮脂类(由异戊二烯次单元缩合聚合而成)。脂类常被视为是脂肪的同义词,但脂肪只是一种称为三酸甘油脂的脂类。脂类也包括脂肪酸及其衍生物,包括单酸甘油酯、二酸甘油酯、磷脂等,也包括其他含有固醇的代谢产物,像是胆固醇。虽然人类和其他动物有许多不同的代谢方式,可以切断脂肪链及合成脂质,不过仍有一些必需脂质无法自行合成,需要在食物中摄取。有生物以前脂质的化学反应,以及原始生命体的形成,现已认为是生命起源模型中的关键。脂肪酸,或是脂质中的脂肪酸残留部分,是由乙酰辅酶A和丙二酰辅酶A及甲基丙二酸单酰辅酶A合成的许多不同种类的分子,合成的反应称为脂肪酸合成。脂肪酸是由尾端为羧酸官能基的碳链组成,因此分子会有有极性且亲水的一端,另一端则是非极性且疏水的。脂肪酸结构是生物脂质中最基本的结构,常用来建构更复杂脂质。碳链长度一般介于4到24个碳之间,可能是饱和化合物或是不饱和化合物,也可能连结其他含有氧、卤素、氮或是硫的官能基。若脂肪酸中含有双键,则可能会有顺式及反式的顺反异构,对分子组态(英语:molecular configuration)有很大的影响。顺式的双键会使碳链弯曲,若是分子中有多个双键,反应会更明显。18个碳的亚麻酸中有三个双键,是植物的类囊体膜中最丰富的脂肪酸酰基链,因此在环境低温时,仍可以使囊膜有高度的流动性。大部分天然的(有双键的)脂肪酸是顺式的,不过有些天然的脂肪酸是反式的,而人工氢化的脂肪和油类也是反式的。在生物中重要的脂肪酸包括主要衍生自花生四烯酸的类花生酸,另一种为二十碳五烯酸(EPA),包括前列腺素、白三烯、血栓素等。二十二碳六烯酸(DHA)对生物体也相当的重要,尤其是在生物的视觉上。其他重要的脂肪酸类脂质包括脂肪酸酯及脂肪酸胺,脂肪酸酯包括重要的生物化学中间产物,例如蜡酯(英语:wax ester)、及脂肪酸硫酯辅酶A衍生物、脂肪酸硫酯酰基载体蛋白衍生物、及脂肪酸肉碱。脂肪酸胺包括N-脂肪酰基胺(英语:N-acylethanolamine),例如大麻素中的神经传导物质花生四烯酸乙醇胺。甘油酯中包括单酸(英语:Monoglyceride)、二酸及三酸甘油酯,分别是甘油和一、二、三个脂肪酸形成的酯类,其中最为人知的是三酸甘油酯,其中甘油
的三个羟基和脂肪酸反应,多半会是三种不同的脂肪酸。动物会用脂质储存能量,而这些脂质也会储存在动物的脂肪组织中。在代谢脂肪时三酸甘油酯的酯键会断裂,分解为甘油和脂肪酸。甘油酯类中的化合物还包括甘油葡糖苷(glycosylglycerol),是甘油和单糖由糖苷键键结的化合物,例如在植物薄膜中常见的二半乳糖基二脂酰甘油(digalactosyldiacylglycerol),或是哺乳类精子中常见的精脂(英语:seminolipid)。甘油磷脂一般简称为磷脂,是含有磷酸的脂类,出现在自然界及细胞的磷脂双分子层中,和新陈代谢和细胞信号传送有关。神经组织(包括大脑)含有大量的磷脂,其成分的改变意味着有可能有神经的病变。磷脂可以分为两类,真核生物及细菌中的磷脂,其极性的分子团连结在甘油的sn-3位上,而古菌中的磷脂,其极性的分子团连结在甘油的sn-1位上。生物膜中常见的磷脂有磷脂酰胆碱(也称为PC、GPCho或卵磷脂)、磷脂酰乙醇胺(PE或GPEtn)及磷脂丝胺酸(也称为PS或GPSer)。磷脂除了作为细胞膜的主要成分,以及结合细胞内或细胞间蛋白质外。有些真核生物细胞中的磷脂是细胞膜衍生的第二信使系统或是其前驱体,这类磷脂有磷脂酰肌醇(英语:phosphatidylinositol)及磷脂酸。一般而言甘油的一或两个羟基会连接长链的脂肪酸,不过也有连接烷基或是1Z-烯基(缩醛磷脂(英语:plasmalogen)的磷脂,例如古菌中的二烷基醚变体。鞘脂是一组复杂化合物的统称,有共同的鞘氨醇碱(sphingoid base)骨架,是由丝胺酸和长脂肪链的酰基辅酶A从头合成,之后转换为神经酰胺、磷鞘脂、糖鞘脂和其它化合物。哺乳动物的鞘氨醇碱一般是指鞘氨醇。神经酰胺是常见的鞘氨醇碱衍生物,有一个连接酰胺基的脂肪酸。其脂肪酸多半是饱和脂肪酸或是单元不饱和脂肪酸,碳链长度约为16至26个碳原子哺乳类体内的鞘脂主要以鞘磷脂为主.而昆虫体内则主要是磷酸乙醇胺神经酰胺,真菌体内有植物神经磷酸肌醇及含有甘露糖的鞘脂。糖鞘脂是鞘脂和糖以糖苷键连结的化合物,例如构造简单的脑苷脂以及较复杂的神经节苷脂。固醇包括胆固醇及其衍生物,以及甘油磷脂和鞘磷脂是组成生物膜的重要成分。固醇都有相同的四环结构,是身体中的激素及细胞信号传送,有着不同的角色。18个碳的固醇包括雌激素,C19的固醇包括雄激素,例如睾酮及雄甾酮。C21的固醇包括孕激素、糖皮质激素及盐皮质激素。开环类固醇(英语:secosteroid)包括许多不同形式的维生素D,其特征是固醇主结构中B环的开环其他的固醇有胆汁酸及其共轭碱,是哺乳类氧化胆固醇后的衍生物,在肝脏中生成。植物中的固醇称为植物固醇,例如β-谷固醇、豆固醇及菜籽固醇,后者也是判断藻类生长的生物标记。真菌细胞膜中主要的固醇为麦角固醇。异戊烯醇(英语:Prenol)酯是由五碳异戊烯基二磷酸(英语:isopentenyl diphosphate)及二甲基烯丙基二磷酸(英语:dimethylallyl diphosphate)合成,主要是透过甲羟戊酸路径。简单的类异戊二烯是由C5单元的连续加成所形成,依照萜烯的数量来分类。超过40个碳的萜称为多萜。类胡萝卜素是重要的简单类异戊二烯,是抗氧化剂,也是维生素A的前驱体。另一种重要的分子是醌及对苯二酚。维生素E、维生素K及辅酶Q10也属于这一类。原核生物会合成聚异戊二烯醇(细菌萜醇),连接在氧原子上的终端异戊二烯是未饱和的,而动物产生的聚异戊二烯醇(多萜醇(英语:dolichol))其终端异戊二烯已被还原。糖脂是指脂肪酸直接连结到糖的骨架,产生和双层脂膜相容的结构。由单糖取代了甘油酯和磷脂中甘油的骨架角色。最常见的糖脂是脂质A的前体,是革兰氏阴性菌中脂多糖之成分之一。典型的脂质A分子有葡萄糖胺双糖,是加了七个脂肪酸链的衍生物。大肠杆菌生长需要的最小多糖脂为Kdo2-Lipid A,是葡萄糖胺的六酰化二糖,其中有二个糖基化的3-脱氧-D-甘露-2-辛酮糖(Kdo)残基。聚酮是由乙酰基及丙酰辅酶A的子单位组成,借由经典的酶聚合的产物。其中包括大量动物、植物、细菌、真菌及海洋生物的次级代谢产物及天然产物,在结构上有很大的不同。 许多聚酮是有环的分子,其主结构经糖基化、甲基化、羟基化、氧化或是其他化学反应。许多常用的抗菌药、抗寄生物药(英语:anti-parasitic)及抗癌药物是聚酮或其衍生物,例如红霉素、四环素类抗生素、阿佛菌素及抗肿瘤的埃皮霉素(英语:epothilone)。真核细胞用生物膜分隔成数个细胞器,各自有不同的生物机能。甘油磷脂是生物膜的主要成分,像细胞膜和细胞器的细胞内Intracellular(英语:膜),动物细胞是由细胞膜分隔细胞内和细胞外的环境。甘油磷脂是两亲分子,分子中同时具有亲水性及亲脂性的基团,其中以甘油为中心,借由酯键连结到二个脂肪基的亲脂性“尾巴”,另外一个酯键连结到一个磷酸的亲水性“头”。生物膜主要是以甘油磷脂为主,但也有一些没有甘油的脂类,像鞘磷脂、胆固醇。在植物及藻类中,缺少磷酸基的磺酸基异鼠李糖基二脂酰基甘油(sulfoquinovosyldiacylglycerol)是叶绿体以其他有关细胞器膜的主要成分,也是高等植物、藻类及一些细菌的光合组织中最丰富的脂类。植物的类囊体膜含有形成非双层膜的单半乳糖甘油二酯(MGDG),且是其中比例最多的脂质,其中也有少量的磷脂。而叶绿体类囊体膜中用磁共振及电子显微镜也发现有动态的脂质双层膜基质。双层膜发现有高度的双折射,可以用双偏振极化干涉测量(英语:dual polarization interferometry)及圆二色性来量测双层膜的规则性或变型程度。生物膜是种层状相(英语:lamellar phase)的磷脂双分子层,若磷脂是在水溶液的环境中,磷脂双分子层的形成是能量考量偏好的过程。这称为疏水效应。在水溶液中,磷脂极性的头朝向极性的水分子,而疏水的尾巴减少对水的接触,彼此距离更加紧密,形成囊泡。依脂质浓度的不同,会生成脂质体、胶束(micelle)及脂质双分子层。也观察到有其他聚合的形式,都是两亲分子的脂质多态性(英语:Phase behaviour)的一部分,这是生物物理学学术研究的主题之一。在极性介质中生成脂质体及胶束的过程称为疏水效应。当在极性环境中溶解两亲性或是亲脂性的物质,因此这些分子的极性分子(例如水溶液中的水)会更加有序。所以在水溶液的环境中,在亲脂性分子附近会有有序的晶笼(英语:clathrate)结构。脂类形成原始生命体生物膜的过程,是生命起源的关键步骤。动植物体内的三酸甘油酯储存在脂肪组织内,是动植物的主要能量来源之一。脂肪细胞设计为可连续生成或分解三酸甘油酯,而其分解主要是透过由荷尔蒙驱动的脂酶来启动。脂肪酸的完整氧化可以产生高热量,约为9 kcal/g,而糖和蛋白质氧化只能产生4 kcal/g的热量,鸟类之所以可以在不进食的条件下长期间飞行,就是利用体内三酸甘油酯储存的热量。最近几年的研究发现脂质信号传送(英语:lipid signaling)是细胞信号传送中基本的一部分。脂质信号传送可以由G蛋白偶联受体或是核受体启动,而且已发现许多不同种类的脂质是信号分子或是第二信使系统的一部分。这类脂质包括1-磷酸鞘氨醇(英语:sphingosine-1-phosphate),由神经酰胺衍生的鞘脂,是钙调节、细胞生长及凋亡有关的信息分子,二酸甘油酯(DAG)及磷酸磷脂酰肌醇(英语:phosphatidylinositol)(PIPs)和蛋白激酶C以钙来引导的活化有关,前列腺素是一种脂肪酸衍生的类二十烷酸,和炎症和免疫有关,甾体荷尔蒙包括雌激素、睾酮及皮质醇,调节像生殖、代谢及血压等机能,像25-羟基胆固醇等氧化胆固醇(英语:oxysterol)是肝X受体的激动剂。脂溶性维生素(如维生素A、D、E、K)是萜烯的脂质,是人体必需的营养素,储存在肝脏及脂肪组织中,有许多不同的功能。肉碱和脂肪酸的运输及代谢时,进出线粒体有关,其中会进行β-氧化。在运输寡糖进出细胞膜的过程中,聚异戊二烯和其磷酸化的衍生物也起到重要的作用的。聚异戊二烯醇的磷酸糖及二磷酸糖在细胞质外的糖基化反应、细胞外的生物多糖合成(例如细菌进行的肽聚糖聚合)及真核蛋白质的N-糖基化中都有其作用。心磷脂是一种含有四个酰基及三个甘油基团的甘油酰磷脂,在线粒体内膜中相当丰富。一般认为他们可以活化和氧化磷酸化有关的酶。脂质也是形成甾体荷尔蒙的原料。人类和其他动物食物常见的脂质有动物及植物的三酸甘油酯、甾醇,和生物膜的磷脂。脂质代谢的过程可以合成及降解储存的脂质,并产生个别组织需要的结构性及机能性的脂质。动物若摄取了过量的糖类,过量的糖类会转换为三酸甘油酯,过程中包括由乙酰辅酶A合成脂肪酸,以及将脂肪酸酯化形成三酸甘油酯,后者称为脂肪生成(英语:lipogenesis)。脂肪酸合酶合成脂肪酸的过程是先聚合,再还原乙酰辅酶A单元。脂肪酸中的酰链是在一连串的反应中延长,一开始先加入乙酰基,还原后得到醇类,脱水得到烯类,再还原后得到烷类。生物合成脂肪酸的酶分为二类,在动物及真菌中,脂肪酸的合成反应是由单一的多功能蛋白质实现,而在植物色素体及细菌体内是由不同的酶分工进行。脂肪酸会转换为三酸甘油酯,包裹在脂蛋白中,并在肝脏中释出。不饱和脂肪酸的生成需要脂肪酸去饱和(英语:desaturase)反应,在脂肪酰基中引入双键酸。在人体身内,硬脂酸透过固醇辅酶A去饱和酶1(英语:stearoyl-CoA desaturase-1)会变成油酸,是单元不饱和脂肪酸。但人体组织无法生成有二个双键的亚油酸及三个双键的Α-亚麻酸,因此这些多元不饱和脂肪酸需在饮食中摄取,称为必需脂肪酸。三酸甘油酯的生成是在内质网中进行,其中在乙酰辅酶A中的酰基转换为甘油-3-磷酸及二酸甘油酯中的羟基。萜烯和类萜(如类胡萝卜素)的生成是由异戊二烯单元的组合和修饰,异戊二烯单元是由活性的前驱体焦磷酸异戊烷(英语:isopentenyl pyrophosphate)及焦磷酸二甲基烯丙酯(英语:dimethylallyl pyrophosphate)提供。前驱体的生成方式有许多种:在动物及古菌中会透过甲羟戊酸途径,由乙酰辅酶A产生这些化合物,而在植物和细菌中非甲羟戊酸途径(英语:Non-mevalonate pathway)用丙酮酸及甘油醛3-磷酸来产生。会用到这些化合物的一种重要反应为甾体生成反应,其中会结合异戊二烯单元,生成鲨烯,再折叠产生甾体环,生成羊毛固醇。羊毛固醇可以生成像胆固醇及麦角固醇等固醇。脂肪酸的代谢是透过在线粒体或/及过氧化体中进行的β-氧化反应,产生乙酰辅酶A。大部分的情形中,脂肪酸氧化的机制类似脂肪酸合成的逆反应。在脱氢、水合及氧化反应后,脂肪酸会脱落二个碳,借由硫解(英语:thiolysis)产生酮酸。乙酰辅酶A最后会由三羧酸循环及电子传递链,转换为三磷酸腺苷(ATP)、CO2及H2O。若体内没有葡萄糖或是含量不多时,三羧酸循环可以由乙酰辅酶A开始,并且分解脂肪以产生能量。脂肪酸棕榈酸酯在完全氧化后,可产生对应106个ATP的能量。不饱和脂肪酸及奇数链长的脂肪酸需要额外的酶反应才能降解。大部分食物中的脂质是三酸甘油酯、甾醇和磷脂。若食物中有一些脂质,有助于脂溶性的维生素(如维生素A、D、E、K)及类胡萝卜素的吸收。人类和其他哺乳类因为无法合成一些特定的脂肪酸,需要借由食物摄取,称为必需脂肪酸,例如ω-6脂肪酸的亚油酸及ω-3脂肪酸的α-亚麻酸
。上述两种脂肪酸都是18个碳的多元不饱和脂肪酸,但双键的数量和位置有所不同。大部分的植物油含有大量的亚油酸,像是红花油、葵花籽油及玉米油等。α-亚麻酸则主要是在植物的叶子及以一些特定的种子、核果及豆类中,例如亚麻、油菜籽、核桃及大豆。鱼油中有大量长链的ω-3脂肪酸,例如二十碳五烯酸(EPA)和二十二碳六烯酸(DHA)。许多研究显示摄取ω-3脂肪酸对于婴儿发展、癌症及心血管疾病的预防,以及像抑郁症,注意力缺陷多动障碍和痴呆等精神疾病的的预防都有帮助。相反的,摄取由植物油部分氢化产生的反式脂肪是可能造成心血管疾病的危险因子。许多研究指出每日脂肪的摄取量和肥胖症及糖尿病的风险有正相关。不过也有许多研究指出脂肪的摄取量和这些疾病没有相关性,这些研究包括女性健康行动(英语:Women's Health Initiative)针对约五万名妇女为期八年的饮食调整试验、护士健康研究以及卫生专业人员的随访研究等。这些研究认为热量中来自脂肪的比例和癌症、心脏疾病和体重的增加没有关系。哈佛公共卫生学院(英语:Harvard School of Public Health)营养系的网站Nutrition Source总结了饮食中总脂肪量对人体的影响:“详细的研究(其中大部分是在哈佛进行)指出,饮食中总脂肪量和体重的变化或是疾病没有关系。”。医学导航:遗传代谢缺陷代谢、k,c/g/r/p/y/i,f/h/s/l/o/e,a/u,n,mk,cgrp/y/i,f/h/s/l/o/e,au,n,m,人名体征药物(A16/C10)、中间产物(k,c/g/r/p/y/i,f/h/s/o/e,a/u,n,m)医学导航:遗传代谢缺陷代谢、k,c/g/r/p/y/i,f/h/s/l/o/e,a/u,n,mk,cgrp/y/i,f/h/s/l/o/e,au,n,m,人名体征药物(A16/C10)、中间产物(k,c/g/r/p/y/i,f/h/s/o/e,a/u,n,m)医学导航:遗传代谢缺陷代谢、k,c/g/r/p/y/i,f/h/s/l/o/e,a/u,n,mk,cgrp/y/i,f/h/s/l/o/e,au,n,m,人名体征药物(A16/C10)、中间产物(k,c/g/r/p/y/i,f/h/s/o/e,a/u,n,m)中密度脂蛋白:LRP(LRP1 · LRP1B · LRP2 · LRP3 · LRP4 · LRP5 · LRP5L · LRP6 · LRP8 · LRP10 · LRP11 · LRP12)
低密度脂蛋白:
相关
- QICD-10 第十七章:先天畸形、变形和染色体异常,为ICD规定的各类先天畸形、变形和染色体异常。Q00-Q07 神经系统先天性畸形Q10-Q18 眼、耳、面和颈部先天性畸形Q20-Q28 循环系统
- 多瘤病毒多瘤病毒科(Polyomaviridae)是一种双链DNA病毒,这类的病毒会造成肿瘤,其中有些种类会感染人的呼吸系统、肾脏或脑部。下有一属:环状双股DNA (dsDNA),会抓宿主的 histone 组成 mini
- 厄他培南厄他培南(英语:Ertapenem)是一种碳青霉烯类抗生素,由默沙东以怡万之为商品名销售。结构上,厄他培南与美罗培南非常相似,前者有一个1-β-甲基。羧基青霉素:羧苄西林(卡茚西林) · 替
- 青霉菌青霉菌是最常见的真菌(半知菌)中的一种。肉眼可见其孢子的颜色为蓝绿色,因而得名。但是并非所有青霉属的霉菌都为蓝绿色,也有白色或者绿色。在显微镜下,可见其呈笔一样形状的笔状
- 滥交劈腿族(promiscuity)是指同时拥有两位或更多情人者。华人古时有“脚踏两条船”(台语俗谚:“双脚踏双船,心肝乱纷纷”)的说法,形容一个人用情不专,在两个对象之中周游不定。“劈腿”
- 奥硝唑奥硝唑(Ornidazole),化学名:1-(3-氯-2-羟丙基)-2-甲基-5-硝基咪唑,是一种5-硝基咪唑类抗生素,用于治疗厌氧菌和原虫、滴虫感染。左奥硝唑是奥硝唑的左旋体((S)-(−)-),用于滴虫、阿米
- 斯提里科弗拉维斯·斯提里科(Flavius Stilicho,约359-408年)也译作斯蒂里格、斯底里哥,是拥有半蛮族的血统的高级将领,贵族和西罗马帝国执政官。斯提里科出生在日耳曼地区,是一位汪达尔父亲
- 石绵石棉,又称石绵,是天然的纤维晶体状的6大硅酸盐类矿物质的总称;(Asbestos,5.5FeO,1.5MgO,8SiO2,H2O)成分中含有一定数量的水;分裂成絮时呈白色;丝绢光滑,富有弹性。 最常见的有3种:温石
- 小阴唇小阴唇(Labia Minora)是两瓣柔软的皮肤,位于大阴唇内侧、阴道口外侧。其中有丰富的神经末梢,具有相当的敏感性。处女时是经常处于闭合状态,保护阴道洁净。
- 上胚层在羊膜动物胚胎学,哺乳动物的上胚层(epiblast)是从内细胞团中所分化的组织;鸟类、爬虫类则是从胚盘所发育出来的。位于下胚层的上方。在哺乳动物胚胎学,当下胚层的立方细胞逐渐靠