对偶空间

✍ dations ◷ 2025-11-22 12:29:31 #线性代数,泛函分析,同调代数,对偶理论

向量 · 向量空间  · 行列式  · 矩阵

标量 · 向量 · 向量空间 · 向量投影 · 外积 · 内积 · 数量积 · 向量积

矩阵 · 行列式 · 线性方程组 · 秩 · 核 · 迹 · 单位矩阵 · 初等矩阵 · 方块矩阵 · 分块矩阵 · 三角矩阵 · 非奇异方阵 · 转置矩阵 · 逆矩阵 · 对角矩阵 · 可对角化矩阵 · 对称矩阵 · 反对称矩阵 · 正交矩阵 · 幺正矩阵 · 埃尔米特矩阵 · 反埃尔米特矩阵 · 正规矩阵 · 伴随矩阵 · 余因子矩阵 · 共轭转置 · 正定矩阵 · 幂零矩阵 · 矩阵分解 (LU分解 · 奇异值分解 · QR分解 · 极分解 · 特征分解) · 子式和余子式 · 拉普拉斯展开 ·

线性空间 · 线性变换 · 线性子空间 · 线性生成空间 · 基 · 线性映射 · 线性投影 · 线性无关 · 线性组合 · 线性泛函 · 行空间与列空间 · 对偶空间 · 正交 · 特征向量 · 最小二乘法 · 格拉姆-施密特正交化 ·

在数学里,任何向量空间都有其对应的对偶向量空间(或简称为对偶空间),由的线性泛函组成。此对偶空间俱有一般向量空间的结构,像是向量加法及标量乘法。由此定义的对偶空间也可称之为代数对偶空间。在拓扑向量空间的情况下,由连续的线性泛函组成的对偶空间则称之为连续对偶空间。

对偶空间是 行向量( 1 × n {\displaystyle 1\times n} 到的所有线性函数的集合。即是的标量线性变换。 V {\displaystyle V^{*}} 中的 a {\displaystyle a} 中的 x {\displaystyle x} 的元素被称为反变或逆变(contravariant)向量而*的元素被称为共变或协变(covariant)向量、“余向量”或“同向量”(co-vectors),“线性型”或“一形”(one-form)。

如果是有限维的, V {\displaystyle V^{*}} 的基, V {\displaystyle V^{*}} 是平面几何向量的空间, V {\displaystyle V^{*}} 是无限维度, e i {\displaystyle e^{i}} 的大。

例如空间 R ( ω ) {\displaystyle R^{(\omega )}} t f : W V {\displaystyle ^{t}f:W^{*}\rightarrow V^{*}} 表示作其对 V , W {\displaystyle V,W} 及都是向量空间范畴的逆变函子。

正如所见,如果 V {\displaystyle V} 之连续对偶记作′。此脉络下可迳称连续对偶为。

线性赋范向量空间(如一巴拿赫空间或一希尔伯特空间)之连续对偶产生一线性赋范向量空间。对一上之连续线性泛函,其范数 φ {\displaystyle \left\Vert \varphi \right\Vert }  ,使其范数

有限。以 1 p + 1 q = 1 {\displaystyle {\frac {1}{p}}+{\frac {1}{q}}=1} 中收敛至零者)之连续对偶皆自然同构于 I 1 {\displaystyle I^{1}} 为希尔伯特空间,则其连续对偶亦然,并反同构于;此盖黎兹表示定理所明,物理学人赖以描述量子力学之狄拉克符号肇端乎是。

类似双重代数对偶,对连续线性算子亦有连续单射 ψ : V V {\displaystyle \psi :V\rightarrow V''} x {\displaystyle x} 以一新拓扑,名弱拓扑。

若之对偶可分,则亦可分。反之则不然;试取空间 I 1 {\displaystyle I_{1}} ,其对偶 I {\displaystyle I\infty } 不可分。

相关

  • 依法利珠单抗依法利珠单抗(Efalizumab,药品商品名为 Raptiva,瑞体肤,默克)是牛皮癣的治疗用药,是一种抗CD11a的单克隆抗体制剂,其作用机制是辨识白血球上的CD11a抗原,使白血球与其他细胞附着的能
  • 古代殖民地古代殖民地是指古代地中海地区的文明建立的海外殖民地,大多是与母城邦(metropolis,英语中大都市一词即来源于此)领土不接壤的殖民城邦的形式。殖民城市与母城市之间的联系依然十
  • 海沟列表以下是地球上海沟的列表:
  • 放射型城市放射型城市亦称为中心型城市,通常与组团式城市、线形城市相对。其重要特征为城市往往由一个中心地区作为城市核心构成,其他道路与街道和设施以圆环状或方形环状环绕城市中心辐
  • Noonan综合征努南氏综合征(Noonan syndrome)为一相对常见的常染色体显性遗传疾病,该病得名自小儿心脏科医师贾桂琳·努南。该病的症状类似透纳氏症,但可能发生于男性及女性。努南氏综合征常
  • C63T5O、​4A5W、​4E0S72912274ENSG00000039537ENSMUSG00000022181P13671n/aNM_000065、NM_001115131、XM_006714496、XM_011514114、XM_011514115、XM_011514116、XM_011514
  • 带宽带宽(英语:bandwidth)在计算机领域中是指可用或耗用的信息量比特率,通常以测得的每秒数量表示。带宽包括网络带宽、数据带宽、数字带宽等。该“带宽”的定义与信号处理、无线通
  • 威廉·佩利 (哲学家)威廉·佩利(英语:William Paley 1743年7月-1805年5月25日)英国神职人员、基督教辨惑学者、哲学家、功利主义者。著作有《自然神学:从自然现象中收集的关于神性存在和其属性的证
  • 汉斯·冯·奥伊勒-切尔平汉斯·卡尔·奥古斯特·西蒙·冯·奥伊勒-切尔平(Hans Karl August Simon von Euler-Chelpin,1873年2月15日德国奥格斯堡 - 1964年11月6日瑞典斯德哥尔摩),瑞典生物化学家,1929年
  • 次闭央圆唇元音次闭央圆唇元音是一个用于一些口语中的元音。国际音标可以用数种方法表示这个音(见右表),但最常见的符号是:另外,符号⟨ᵿ⟩,即⟨ʊ⟩与⟨ʉ⟩的合体,是IPA的非官方扩展音标,并被许