对偶空间

✍ dations ◷ 2025-07-02 18:48:17 #线性代数,泛函分析,同调代数,对偶理论

向量 · 向量空间  · 行列式  · 矩阵

标量 · 向量 · 向量空间 · 向量投影 · 外积 · 内积 · 数量积 · 向量积

矩阵 · 行列式 · 线性方程组 · 秩 · 核 · 迹 · 单位矩阵 · 初等矩阵 · 方块矩阵 · 分块矩阵 · 三角矩阵 · 非奇异方阵 · 转置矩阵 · 逆矩阵 · 对角矩阵 · 可对角化矩阵 · 对称矩阵 · 反对称矩阵 · 正交矩阵 · 幺正矩阵 · 埃尔米特矩阵 · 反埃尔米特矩阵 · 正规矩阵 · 伴随矩阵 · 余因子矩阵 · 共轭转置 · 正定矩阵 · 幂零矩阵 · 矩阵分解 (LU分解 · 奇异值分解 · QR分解 · 极分解 · 特征分解) · 子式和余子式 · 拉普拉斯展开 ·

线性空间 · 线性变换 · 线性子空间 · 线性生成空间 · 基 · 线性映射 · 线性投影 · 线性无关 · 线性组合 · 线性泛函 · 行空间与列空间 · 对偶空间 · 正交 · 特征向量 · 最小二乘法 · 格拉姆-施密特正交化 ·

在数学里,任何向量空间都有其对应的对偶向量空间(或简称为对偶空间),由的线性泛函组成。此对偶空间俱有一般向量空间的结构,像是向量加法及标量乘法。由此定义的对偶空间也可称之为代数对偶空间。在拓扑向量空间的情况下,由连续的线性泛函组成的对偶空间则称之为连续对偶空间。

对偶空间是 行向量( 1 × n {\displaystyle 1\times n} 到的所有线性函数的集合。即是的标量线性变换。 V {\displaystyle V^{*}} 中的 a {\displaystyle a} 中的 x {\displaystyle x} 的元素被称为反变或逆变(contravariant)向量而*的元素被称为共变或协变(covariant)向量、“余向量”或“同向量”(co-vectors),“线性型”或“一形”(one-form)。

如果是有限维的, V {\displaystyle V^{*}} 的基, V {\displaystyle V^{*}} 是平面几何向量的空间, V {\displaystyle V^{*}} 是无限维度, e i {\displaystyle e^{i}} 的大。

例如空间 R ( ω ) {\displaystyle R^{(\omega )}} t f : W V {\displaystyle ^{t}f:W^{*}\rightarrow V^{*}} 表示作其对 V , W {\displaystyle V,W} 及都是向量空间范畴的逆变函子。

正如所见,如果 V {\displaystyle V} 之连续对偶记作′。此脉络下可迳称连续对偶为。

线性赋范向量空间(如一巴拿赫空间或一希尔伯特空间)之连续对偶产生一线性赋范向量空间。对一上之连续线性泛函,其范数 φ {\displaystyle \left\Vert \varphi \right\Vert }  ,使其范数

有限。以 1 p + 1 q = 1 {\displaystyle {\frac {1}{p}}+{\frac {1}{q}}=1} 中收敛至零者)之连续对偶皆自然同构于 I 1 {\displaystyle I^{1}} 为希尔伯特空间,则其连续对偶亦然,并反同构于;此盖黎兹表示定理所明,物理学人赖以描述量子力学之狄拉克符号肇端乎是。

类似双重代数对偶,对连续线性算子亦有连续单射 ψ : V V {\displaystyle \psi :V\rightarrow V''} x {\displaystyle x} 以一新拓扑,名弱拓扑。

若之对偶可分,则亦可分。反之则不然;试取空间 I 1 {\displaystyle I_{1}} ,其对偶 I {\displaystyle I\infty } 不可分。

相关

  • 政治心理学异常心理学 行为遗传学 生物心理学 心理药物学 认知心理学 比较心理学 跨文化心理学 文化心理学 差异心理学(英语:Differential psychology) 发展心理学 演化心理学 实验心理学
  • 和县人和县人(学名:Homo erectus hexianensis),旧称和县猿人,学名直立人和县亚种,是在更新世中期、旧石器时代早期生活在华东地区的直立人的代表之一。1980~1981年间,安徽和县陶店镇汪家山
  • 五声调式,或称五声音阶,是中国音乐中的音阶,这5个音依次定名为宫、商、角(jué,ㄐㄩㄝˊ)、徵(zhǐ,ㄓˇ)、羽,大致相当于西洋音乐简谱上的唱名(do)、(re)、(mi)、(sol)、(la)。将这五个音按高低
  • FGF结构 / ECOD成纤维细胞生长因子(FGF, Fibroblast Growth Factor)为一个庞大的生长因子蛋白质家族。无脊椎动物以及脊椎动物体内都已发现FGF的存在。FGF在脊椎动物之间具有很强
  • 北淡线.mw-parser-output .RMbox{box-shadow:0 2px 2px 0 rgba(0,0,0,.14),0 1px 5px 0 rgba(0,0,0,.12),0 3px 1px -2px rgba(0,0,0,.2)}.mw-parser-output .RMinline{float:none
  • 陈建功陈建功(1949年11月-),广西北海人,中华人民共和国作家,中国作家协会副主席,中国现代文学馆原馆长,作家出版社原社长。
  • 詹姆斯·米德尔顿·考克斯詹姆斯·米德尔顿·考克斯(英语:James Middleton Cox,1870年3月31日-1957年7月15日),美国民主党籍政治人物,曾任美国众议院议员(1909年-1913年)和俄亥俄州州长(1913年-1915年、1917年-
  • 中文上网官方版软件中文上网官方版软件是中国互联网络信息中心(CNNIC)开发的互联网辅助软件。软件开发单位宣称,该软件作用为体现中文网站域名的重定向,但该软件因被指为属流氓软件而惹来争议。通
  • 艾哈迈德·贾纳提First spouse divorced 艾哈迈德·贾纳提(波斯语:احمد جنتی‎,1927年2月23日–)是一位强硬派伊朗政治家、什叶派神职人员、以及哈加尼学派的成员。他同时也是伊朗专
  • 厚唇斑叶兰厚唇斑叶兰(学名: (Lindl.) Benth. C.B. Clarke var. )又名高岭斑叶兰。台湾全岛皆有分布,多出现在海拔300-2000m的山区的阔叶林底层。亦分布在中国南部、喜马拉雅地区、中南