对偶空间

✍ dations ◷ 2025-11-06 00:53:23 #线性代数,泛函分析,同调代数,对偶理论

向量 · 向量空间  · 行列式  · 矩阵

标量 · 向量 · 向量空间 · 向量投影 · 外积 · 内积 · 数量积 · 向量积

矩阵 · 行列式 · 线性方程组 · 秩 · 核 · 迹 · 单位矩阵 · 初等矩阵 · 方块矩阵 · 分块矩阵 · 三角矩阵 · 非奇异方阵 · 转置矩阵 · 逆矩阵 · 对角矩阵 · 可对角化矩阵 · 对称矩阵 · 反对称矩阵 · 正交矩阵 · 幺正矩阵 · 埃尔米特矩阵 · 反埃尔米特矩阵 · 正规矩阵 · 伴随矩阵 · 余因子矩阵 · 共轭转置 · 正定矩阵 · 幂零矩阵 · 矩阵分解 (LU分解 · 奇异值分解 · QR分解 · 极分解 · 特征分解) · 子式和余子式 · 拉普拉斯展开 ·

线性空间 · 线性变换 · 线性子空间 · 线性生成空间 · 基 · 线性映射 · 线性投影 · 线性无关 · 线性组合 · 线性泛函 · 行空间与列空间 · 对偶空间 · 正交 · 特征向量 · 最小二乘法 · 格拉姆-施密特正交化 ·

在数学里,任何向量空间都有其对应的对偶向量空间(或简称为对偶空间),由的线性泛函组成。此对偶空间俱有一般向量空间的结构,像是向量加法及标量乘法。由此定义的对偶空间也可称之为代数对偶空间。在拓扑向量空间的情况下,由连续的线性泛函组成的对偶空间则称之为连续对偶空间。

对偶空间是 行向量( 1 × n {\displaystyle 1\times n} 到的所有线性函数的集合。即是的标量线性变换。 V {\displaystyle V^{*}} 中的 a {\displaystyle a} 中的 x {\displaystyle x} 的元素被称为反变或逆变(contravariant)向量而*的元素被称为共变或协变(covariant)向量、“余向量”或“同向量”(co-vectors),“线性型”或“一形”(one-form)。

如果是有限维的, V {\displaystyle V^{*}} 的基, V {\displaystyle V^{*}} 是平面几何向量的空间, V {\displaystyle V^{*}} 是无限维度, e i {\displaystyle e^{i}} 的大。

例如空间 R ( ω ) {\displaystyle R^{(\omega )}} t f : W V {\displaystyle ^{t}f:W^{*}\rightarrow V^{*}} 表示作其对 V , W {\displaystyle V,W} 及都是向量空间范畴的逆变函子。

正如所见,如果 V {\displaystyle V} 之连续对偶记作′。此脉络下可迳称连续对偶为。

线性赋范向量空间(如一巴拿赫空间或一希尔伯特空间)之连续对偶产生一线性赋范向量空间。对一上之连续线性泛函,其范数 φ {\displaystyle \left\Vert \varphi \right\Vert }  ,使其范数

有限。以 1 p + 1 q = 1 {\displaystyle {\frac {1}{p}}+{\frac {1}{q}}=1} 中收敛至零者)之连续对偶皆自然同构于 I 1 {\displaystyle I^{1}} 为希尔伯特空间,则其连续对偶亦然,并反同构于;此盖黎兹表示定理所明,物理学人赖以描述量子力学之狄拉克符号肇端乎是。

类似双重代数对偶,对连续线性算子亦有连续单射 ψ : V V {\displaystyle \psi :V\rightarrow V''} x {\displaystyle x} 以一新拓扑,名弱拓扑。

若之对偶可分,则亦可分。反之则不然;试取空间 I 1 {\displaystyle I_{1}} ,其对偶 I {\displaystyle I\infty } 不可分。

相关

  • 奶妈乳母,又称乳娘、奶娘、奶妈、奶母、奶婆,是雇用来以母乳喂哺婴儿的妇女。在古代,奶粉或其他母乳代用品未发明或未普及时,婴儿的生母如不能或不愿意哺育其子女,往往会雇用乳母。尤
  • 二级结构二级结构(英语:Secondary structure)在生物化学及结构生物学中,是指一个生物大分子,如蛋白质及核酸(DNA或RNA),局部区段的三维通式。然而它并不描述任何特定的原子位置(在三级结构中
  • 会子会子是中国南宋时的纸币,绍兴三十年(1160年)于临安首度发行。绍兴末年,南宋政府铜钱紧缺,开始以票据“会子”应付开支,先在临安地区使用,叫“东南会子”。绍兴三十年(1160年)二月,钱端
  • 仰韶文化、瓮等日用陶器渭河流域河南西部山西河北汉水中上游甘肃洮河流域河套地区仰韶文化是黄河中游地区重要的新石器时代文化,年代约为公元前5000年-公元前3000年前,分布在整个黄河中
  • 泰·劳森泰冯·龙内尔·劳森(英语:Tywon Ronnell Lawson,1987年11月3日-),美国NBA联盟职业篮球运动员。他在2009年的NBA选秀中第1轮第18顺位被明尼苏达森林狼选中。2015年7月在洛杉矶因为
  • ɺ齿龈边闪音(Alveolar lateral flap)是一种边闪音(介于边音和闪音之间),符号是⟨ɺ⟩。日语“ら”行辅音(标准发音)就是这个音(有些人也许会发作等音)。齿龈边闪音系列以IPA说明如下:当
  • 埃塞克斯参数所指定的目标页面不存在,建议更正成存在页面或直接建立下列一个页面(建立前请先搜寻是否有合适的存在页面可以取代):埃塞克斯郡(英语:Essex),英国英格兰东部的郡。以人口计算,滨
  • .th.th为泰国国家和地区顶级域(ccTLD)的域名。目前泰国并不允许申请.th域名,可以申请的域名为二级的.co.th。此外也拥有泰语的顶级域名,即.ไทย,但目前受制于该国互联网法律之限制
  • 舒瓦瑟尔 (圣卢西亚)舒瓦瑟尔(英语:Choiseul)是加勒比海岛国圣卢西亚舒瓦瑟尔区的一个村庄,位于该岛西南海岸,该城镇由法国人建立于18世纪,得名于舒瓦瑟尔公爵,海拔高度58米,2005年人口6,323人。今天,舒
  • 沃尔夫哈特·豪泽沃尔夫哈特·豪泽(Wolfhart Hauser,另有中文名符浩申,1949年12月5日-)是德国企业家,现为伦敦交易所上市公司、国际检测认证公司天祥集团的首席执行官。为医学硕士、医学博士,学位分