对偶空间

✍ dations ◷ 2025-06-09 14:18:24 #线性代数,泛函分析,同调代数,对偶理论

向量 · 向量空间  · 行列式  · 矩阵

标量 · 向量 · 向量空间 · 向量投影 · 外积 · 内积 · 数量积 · 向量积

矩阵 · 行列式 · 线性方程组 · 秩 · 核 · 迹 · 单位矩阵 · 初等矩阵 · 方块矩阵 · 分块矩阵 · 三角矩阵 · 非奇异方阵 · 转置矩阵 · 逆矩阵 · 对角矩阵 · 可对角化矩阵 · 对称矩阵 · 反对称矩阵 · 正交矩阵 · 幺正矩阵 · 埃尔米特矩阵 · 反埃尔米特矩阵 · 正规矩阵 · 伴随矩阵 · 余因子矩阵 · 共轭转置 · 正定矩阵 · 幂零矩阵 · 矩阵分解 (LU分解 · 奇异值分解 · QR分解 · 极分解 · 特征分解) · 子式和余子式 · 拉普拉斯展开 ·

线性空间 · 线性变换 · 线性子空间 · 线性生成空间 · 基 · 线性映射 · 线性投影 · 线性无关 · 线性组合 · 线性泛函 · 行空间与列空间 · 对偶空间 · 正交 · 特征向量 · 最小二乘法 · 格拉姆-施密特正交化 ·

在数学里,任何向量空间都有其对应的对偶向量空间(或简称为对偶空间),由的线性泛函组成。此对偶空间俱有一般向量空间的结构,像是向量加法及标量乘法。由此定义的对偶空间也可称之为代数对偶空间。在拓扑向量空间的情况下,由连续的线性泛函组成的对偶空间则称之为连续对偶空间。

对偶空间是 行向量( 1 × n {\displaystyle 1\times n} 到的所有线性函数的集合。即是的标量线性变换。 V {\displaystyle V^{*}} 中的 a {\displaystyle a} 中的 x {\displaystyle x} 的元素被称为反变或逆变(contravariant)向量而*的元素被称为共变或协变(covariant)向量、“余向量”或“同向量”(co-vectors),“线性型”或“一形”(one-form)。

如果是有限维的, V {\displaystyle V^{*}} 的基, V {\displaystyle V^{*}} 是平面几何向量的空间, V {\displaystyle V^{*}} 是无限维度, e i {\displaystyle e^{i}} 的大。

例如空间 R ( ω ) {\displaystyle R^{(\omega )}} t f : W V {\displaystyle ^{t}f:W^{*}\rightarrow V^{*}} 表示作其对 V , W {\displaystyle V,W} 及都是向量空间范畴的逆变函子。

正如所见,如果 V {\displaystyle V} 之连续对偶记作′。此脉络下可迳称连续对偶为。

线性赋范向量空间(如一巴拿赫空间或一希尔伯特空间)之连续对偶产生一线性赋范向量空间。对一上之连续线性泛函,其范数 φ {\displaystyle \left\Vert \varphi \right\Vert }  ,使其范数

有限。以 1 p + 1 q = 1 {\displaystyle {\frac {1}{p}}+{\frac {1}{q}}=1} 中收敛至零者)之连续对偶皆自然同构于 I 1 {\displaystyle I^{1}} 为希尔伯特空间,则其连续对偶亦然,并反同构于;此盖黎兹表示定理所明,物理学人赖以描述量子力学之狄拉克符号肇端乎是。

类似双重代数对偶,对连续线性算子亦有连续单射 ψ : V V {\displaystyle \psi :V\rightarrow V''} x {\displaystyle x} 以一新拓扑,名弱拓扑。

若之对偶可分,则亦可分。反之则不然;试取空间 I 1 {\displaystyle I_{1}} ,其对偶 I {\displaystyle I\infty } 不可分。

相关

  • 磺胺剂磺胺类药物(Sulfonamides)是一类人工合成的抗菌药物,这类药物都是以对氨基苯磺酰胺(磺胺)为母体发展而来,因此得名。磺胺类药物抗菌谱较广,对大部分革兰氏阴性菌和革兰氏阳性菌均有
  • 一氧化氮合成酶一氧化氮合酶(缩写NOS)是一组酶(EC1.14.13.39)的统称。这种酶负责将精氨酸中的氮原子,在氧气(O2)及其他辅助因素包括烟酰胺腺嘌呤二核苷酸磷酸(NADPH)、黄素腺嘌呤二核苷酸(FAD)、黄素
  • 混合动力车混合动力车辆是使用两种或以上能量来源驱动的车辆,而驱动系统可以有一套或多套。常用的能量来源有燃油、电池、燃料电池、太阳能电池、压缩气体等,而常用的驱动系统包含内燃机
  • 卫理公会中央礼堂坐标:51°30′00″N 0°07′48″W / 51.50000°N 0.13000°W / 51.50000; -0.13000卫理公会中央礼堂(英语:Methodist Central Hall)是位于英国伦敦西敏市的卫理公会(循道宗)教堂,全
  • 私有制私有制,相对于公有制的经济制度。在这种制度下生产资料进行个人或集体的排他性占有。私有制是剥削社会(以奴隶社会、封建社会、资本主义、权贵资本主义和专制制度为代表)基本标
  • 弥浓东门楼弥浓东门楼,位于今台湾高雄市美浓区,是清代弥浓庄的东门,面临美浓溪。乾隆20年(1755年),基于防卫的需要,弥浓庄东栅门加建门楼,是弥浓庄四个栅门中唯一的城门楼。光绪二十一年(1895年
  • 松树岛青年岛(西班牙语:Isla de la Juventud),原名松树岛(Isla de Pinos),古巴第二大岛,位于阿尔特米萨省(原哈瓦那省的一部分)正南,距古巴岛100公里,青年岛及附近小岛属青年岛特区管理,不属于
  • 东佛罗里达东佛罗里达(西班牙语:Florida Oriental)由1763年至1783年间是英国殖民地,1783年至1821年间是西属佛罗里达的一个省份。东佛罗里达在1763年由英国殖民政府建立,包括佛罗里达半岛,西
  • 司马睿晋元帝司马睿(276年5月27日-323年1月3日),字景文,东晋第一位皇帝。司马懿的曾孙、琅邪武王司马伷之孙、琅邪恭王司马觐之子,母为琅邪王妃夏侯光姬。司马睿在八王之乱期间政治上从
  • 王雁云王雁云(1908年-1983年),山东省邹平县花沟乡(今高青县花沟镇)郭家坊村人。早年就读于山东省立第二师范。毕业后,在青岛市段家埠小学任校长。抗日战争爆发后,该校被迫解散,返乡务农。后