黄金比例

✍ dations ◷ 2025-11-28 18:54:49 #几何术语,无理数,数学常数,黄金比例,初等几何,平面几何,比率,视觉艺术理论


黄金比例,又称黄金分割,是一个数学常数,一般以希腊字母 φ {\displaystyle \varphi } 表示。可以透过以下代数式定义:

这也是黄金比例一名的由来。
黄金比例的准确值为 1 + 5 2 {\displaystyle {\frac {1+{\sqrt {5}}}{2}}} ,所以是无理数,而大约值则为(小数点后20位,OEIS A001622):

应用时一般取1.618,就像圆周率在应用时取3.14159一样。

黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值,而且呈现于不少动物和植物的外观。现今很多工业产品、电子产品、建筑物或艺术品均普遍应用黄金分割,展现其实用性与美观性。

黄金比例是属于数学领域的一个专有名词,但是它最后涵盖的内容不只是有关数学领域的研究,根据目前的文献探讨,我们可以说,黄金比例的发现和如何演进至今仍然是一个谜。但有研究指出公元前6世纪古希腊的毕达哥拉斯学派研究过正5边形和正10边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割的一些规则,也发现无理数。他侧重于从数学关系去探讨美的规律,并认为美就是和谐与比例,按照这种比例关系就可以组成美的图案,这其实是一个数字的比例关系,即将一条线分成两部分,较长的一段与较短的一段之比等于全长与较长的一段之比,它们的比例大约是1.618:1,知名的费氏数列也体现了这个数学原则,按此种比例关系组成的任何事物都表现出其内部关系的和谐与均衡。

公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著(即中末比)。

中世纪后,黄金分割被披上神秘的外衣,意大利数学家卢卡·帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家约翰内斯·开普勒称神圣比例为黄金分割。到19世纪黄金分割这一名称才逐渐通行,而证据在于德国数学家马丁·欧姆(英语:Martin Ohm)所写的《基本纯数学》第2版注释中写到有关黄金比例的解释:“人们习惯把按此方式将任一直线分割成两部分的方法,称为黄金分割”。而在1875年出版的《大英百科全书》的第9版中,苏利有提到:“由费区那……提出的有趣、实验性浓厚的想法宣称,‘黄金分割’在视觉比例上具有所谓的优越性。”可见黄金分割在当时已经流行了。20世纪时美国数学家马克·巴尔(英语:Mark Barr)给它个名字叫phi。黄金分割有许多有趣的性质,人类对它的实际应用也很广泛,造就了它今天的名气。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家杰克·基弗(英语:Jack Kiefer (statistician))于1953年首先提出的,70年代在中国推广。

两个数值 a {\displaystyle a} b {\displaystyle b} 构成黄金比例 φ {\displaystyle \varphi } ,如果: a + b a = a b = φ {\displaystyle {\frac {a+b}{a}}={\frac {a}{b}}=\varphi }

一个得出 φ {\displaystyle \varphi } 数值的方法是从左边的分数式入手。经过简化和代入,

于是:

两边乘以 φ {\displaystyle \varphi } 就得到:

即是 φ 2 φ 1 = 0 {\displaystyle {\varphi }^{2}-\varphi -1=0}

找出该方程的正解,

黄金分割奇妙之处,在于其倒数为自身减1,即:1.618...的倒数为 0.618 = 1.618 1 {\displaystyle 0.618\ldots =1.618\ldots -1} ,并时常被称为“黄金比例共轭”。

从上面的 1 + 1 φ = φ {\displaystyle 1+{\frac {1}{\varphi }}=\varphi } 得到:

这个0.618...的数值常用希腊字母 Φ {\displaystyle \Phi } 表示,即:

公式 φ = 1 + 1 φ {\displaystyle \varphi =1+{\frac {1}{\varphi }}} 可以被递归扩展来获得黄金比例的连分数:

而它的倒数是:

平方根表示:

以三角函数的特殊值表示:

即是:

#include <iostream>#include <stdio.h>using namespace std;int main() {  long b, c, d = 0, e = 0, f = 100, i = 0, j, N;  cout << "請輸入黃金分割數位數\n";  cin >> N;  N = N * 3 / 2 + 6;  long* a = new long;  while (i <= N) a = 1;  for (; --i > 0;       i == N - 6 ? printf("\r0.61") : printf("%02ld", e += (d += b / f) / f),       e = d % f, d = b % f, i -= 2)    for (j = i, b = 0; j; b = b / c * (j-- * 2 - 1))      a = (b += a * f) % (c = j * 10);  delete a;  cin.ignore();  cin.ignore();  return 0;}

黄金矩形

鹦鹉螺的内部结构

帕提农神庙

最后的晚餐

联合国总部大楼

向日葵

蝴蝶花纹

贵金属分割即 n + n 2 + 4 2 {\displaystyle {\frac {n+{\sqrt {n^{2}+4}}}{2}}} ,其中 n {\displaystyle n} 为正整数。 n = 1 {\displaystyle n=1} 时为黄金分割( 1 + 5 2 {\displaystyle {\frac {1+{\sqrt {5}}}{2}}} ), n = 2 {\displaystyle n=2} 时为白银分割( 1 + 2 {\displaystyle 1+{\sqrt {2}}} ), n = 3 {\displaystyle n=3} 时为青铜分割( 3 + 13 2 {\displaystyle {\frac {3+{\sqrt {13}}}{2}}} )。用连分数可表示为 n + 1 n + 1 n + 1 n + 1 = {\displaystyle n+{\cfrac {1}{n+{\cfrac {1}{n+{\cfrac {1}{n+{\cfrac {1}{\ddots }}}}}}}}=}

相关

  • 移植物对抗宿主疾病移植物对抗宿主疾病(Graft-versus-host disease)简称GvHD,是在移植来自其他人身上的组织及器官(英语:allotransplantation)后产生的并发症。GvHD一般是和骨髓移植有关,但此概念也可
  • 第戎美术馆第戎美术馆(法语:Musée des beaux-arts de Dijon)是法国第戎的一座美术馆,位于勃艮第公爵宫建筑的右侧东部部分。美术馆创建于1787年。美术馆的藏品虽主要以勃艮第公爵的藏品为
  • 回归年回归年(tropical year),也称为太阳年(solar year),是由地球上观察,太阳平黄经变化360°,即太阳再回到黄道(在天球上太阳行进的轨道)上相同的点所经历的时间。相对于分点和至点,精确的时
  • 2002 AAsub29/sub2002 AA29是一颗近地小行星,于2002年1月9日由丽妮儿小组发现。该天体的公转轨道与地球接近,并以“马蹄铁轨道”形式公转,每95年会被地球超越一圈。据观测,它在未来600年内可能会
  • 艺术教育艺术教育是现代教育概念中重要的一环。在五育“德、智、体、群、美”中,艺术教育比较接近“美育”,但亦有涉及其他四项。艺术教育一方面培养学生的创意、想像力及表达能力,同时
  • Nutt.托马斯·纳托尔(Thomas Nuttall,1786年1月5日-1859年9月10日是英国的植物学家和动物学家。纳托尔出生于约克郡塞特尔的一个小村庄,早期到英格兰工作,作为一个印刷学徒工,后来他到
  • 托潘加托潘加(Topanga)是美国加利福尼亚州的一个人口普查指定地区,位于洛杉矶郡西部圣莫尼卡山脉。2010年人口普查时,托潘加有人口8,289人。
  • 阿德莱·史蒂文森阿德莱·史蒂文森(Adlai Ewing Stevenson II,1900年2月5日-1965年7月14日),美国政治家,以其辩论技巧闻名。曾于1952年和1956年两次代表美国民主党参选美国总统,但皆败选。后出任美
  • 博物志 (张华)《博物志》是晋朝张华所著的一部奇书,共十卷:136。内容包罗万象,有山川地理知识,有历史人物传说,有奇异草木虫鱼、飞禽走兽,也有神仙方术,可谓集神话、古史、博物、杂说于一炉。据
  • 皮博迪先生 (梦工厂)皮博迪先生(英语:Mr. Peabody),是梦工厂2014年电影《天才眼鏡狗》的主角之一。他是一只会说话、非常聪明的狗,也是个商业大亨、发明家、科学家、诺贝尔奖得主、美食家、两次奥