黄金比例

✍ dations ◷ 2025-09-11 18:45:01 #几何术语,无理数,数学常数,黄金比例,初等几何,平面几何,比率,视觉艺术理论


黄金比例,又称黄金分割,是一个数学常数,一般以希腊字母 φ {\displaystyle \varphi } 表示。可以透过以下代数式定义:

这也是黄金比例一名的由来。
黄金比例的准确值为 1 + 5 2 {\displaystyle {\frac {1+{\sqrt {5}}}{2}}} ,所以是无理数,而大约值则为(小数点后20位,OEIS A001622):

应用时一般取1.618,就像圆周率在应用时取3.14159一样。

黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值,而且呈现于不少动物和植物的外观。现今很多工业产品、电子产品、建筑物或艺术品均普遍应用黄金分割,展现其实用性与美观性。

黄金比例是属于数学领域的一个专有名词,但是它最后涵盖的内容不只是有关数学领域的研究,根据目前的文献探讨,我们可以说,黄金比例的发现和如何演进至今仍然是一个谜。但有研究指出公元前6世纪古希腊的毕达哥拉斯学派研究过正5边形和正10边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割的一些规则,也发现无理数。他侧重于从数学关系去探讨美的规律,并认为美就是和谐与比例,按照这种比例关系就可以组成美的图案,这其实是一个数字的比例关系,即将一条线分成两部分,较长的一段与较短的一段之比等于全长与较长的一段之比,它们的比例大约是1.618:1,知名的费氏数列也体现了这个数学原则,按此种比例关系组成的任何事物都表现出其内部关系的和谐与均衡。

公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著(即中末比)。

中世纪后,黄金分割被披上神秘的外衣,意大利数学家卢卡·帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家约翰内斯·开普勒称神圣比例为黄金分割。到19世纪黄金分割这一名称才逐渐通行,而证据在于德国数学家马丁·欧姆(英语:Martin Ohm)所写的《基本纯数学》第2版注释中写到有关黄金比例的解释:“人们习惯把按此方式将任一直线分割成两部分的方法,称为黄金分割”。而在1875年出版的《大英百科全书》的第9版中,苏利有提到:“由费区那……提出的有趣、实验性浓厚的想法宣称,‘黄金分割’在视觉比例上具有所谓的优越性。”可见黄金分割在当时已经流行了。20世纪时美国数学家马克·巴尔(英语:Mark Barr)给它个名字叫phi。黄金分割有许多有趣的性质,人类对它的实际应用也很广泛,造就了它今天的名气。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家杰克·基弗(英语:Jack Kiefer (statistician))于1953年首先提出的,70年代在中国推广。

两个数值 a {\displaystyle a} b {\displaystyle b} 构成黄金比例 φ {\displaystyle \varphi } ,如果: a + b a = a b = φ {\displaystyle {\frac {a+b}{a}}={\frac {a}{b}}=\varphi }

一个得出 φ {\displaystyle \varphi } 数值的方法是从左边的分数式入手。经过简化和代入,

于是:

两边乘以 φ {\displaystyle \varphi } 就得到:

即是 φ 2 φ 1 = 0 {\displaystyle {\varphi }^{2}-\varphi -1=0}

找出该方程的正解,

黄金分割奇妙之处,在于其倒数为自身减1,即:1.618...的倒数为 0.618 = 1.618 1 {\displaystyle 0.618\ldots =1.618\ldots -1} ,并时常被称为“黄金比例共轭”。

从上面的 1 + 1 φ = φ {\displaystyle 1+{\frac {1}{\varphi }}=\varphi } 得到:

这个0.618...的数值常用希腊字母 Φ {\displaystyle \Phi } 表示,即:

公式 φ = 1 + 1 φ {\displaystyle \varphi =1+{\frac {1}{\varphi }}} 可以被递归扩展来获得黄金比例的连分数:

而它的倒数是:

平方根表示:

以三角函数的特殊值表示:

即是:

#include <iostream>#include <stdio.h>using namespace std;int main() {  long b, c, d = 0, e = 0, f = 100, i = 0, j, N;  cout << "請輸入黃金分割數位數\n";  cin >> N;  N = N * 3 / 2 + 6;  long* a = new long;  while (i <= N) a = 1;  for (; --i > 0;       i == N - 6 ? printf("\r0.61") : printf("%02ld", e += (d += b / f) / f),       e = d % f, d = b % f, i -= 2)    for (j = i, b = 0; j; b = b / c * (j-- * 2 - 1))      a = (b += a * f) % (c = j * 10);  delete a;  cin.ignore();  cin.ignore();  return 0;}

黄金矩形

鹦鹉螺的内部结构

帕提农神庙

最后的晚餐

联合国总部大楼

向日葵

蝴蝶花纹

贵金属分割即 n + n 2 + 4 2 {\displaystyle {\frac {n+{\sqrt {n^{2}+4}}}{2}}} ,其中 n {\displaystyle n} 为正整数。 n = 1 {\displaystyle n=1} 时为黄金分割( 1 + 5 2 {\displaystyle {\frac {1+{\sqrt {5}}}{2}}} ), n = 2 {\displaystyle n=2} 时为白银分割( 1 + 2 {\displaystyle 1+{\sqrt {2}}} ), n = 3 {\displaystyle n=3} 时为青铜分割( 3 + 13 2 {\displaystyle {\frac {3+{\sqrt {13}}}{2}}} )。用连分数可表示为 n + 1 n + 1 n + 1 n + 1 = {\displaystyle n+{\cfrac {1}{n+{\cfrac {1}{n+{\cfrac {1}{n+{\cfrac {1}{\ddots }}}}}}}}=}

相关

  • 那不勒斯那不勒斯(意大利语:Napoli;那不勒斯语:Nàpule)是意大利南部的第一大城市,坎帕尼亚大区以及那不勒斯省的首府。城市面积117平方公里,人口略低于100万。那不勒斯都会区有大约380万人
  • 抗磷脂抗磷脂综合征或抗磷脂抗体综合征(英语:antiphospholipid syndrome 或 英语:antiphospholipid antibody syndrome,缩写为APS或APLS)是由于人体免疫系统对细胞膜成分磷脂发生异常的
  • 水杨酰胺水杨酰胺是一种属于水杨酸盐类的物质,通常作为止痛药及退烧药的成分之一。然而,水杨酰胺与亚士匹灵一样,均可令儿童患上雷尔氏综合症,因此不适合儿童服用。水杨酰胺有一种衍生物
  • University of Bristol布里斯托大学(University of Bristol),位于英格兰西部布里斯托市的一所英国大学,其历史可追溯到1876年建立的布里斯托大学学院。该校是英国老牌顶尖大学“红砖”高等学府之一,也
  • 多糖体多糖(英语:Polysaccharide)由多个单糖分子脱水聚合,以糖苷键连接而成,可形成直链或者有分支的长链,水解后得到相应的单糖和寡糖。例如用来储存能量的淀粉和糖原,以及用来组成生物结
  • 贞显王后贞显王后 尹氏(韩文:정현왕후 윤씨,1462年-1530年),又称慈顺大妃,本贯坡平,尹壕与田氏之女。朝鲜王朝成宗李娎之第二继妃,中宗李怿之生母。《中宗实录》记载,朝鲜世祖八年六月二十五日
  • 纽约市警察局纽约市警察局(亦称纽约警察局;英文官方名称:City of New York Police Department,通称:New York City Police Department,缩写:NYPD)成立于1845年,是目前美国最大的警察局,负责纽约市5
  • 国际足联国际足球联合会(法语:Fédération Internationale de Football Association;英语:International Federation of Association Football),简称国际足联(FIFA),是管理英式足球、室内五
  • 马格达莱纳岛马格达莱纳岛(Isla Magdalena)是智利南部的岛屿,位于伊瓦涅斯将军艾森大区,面积约2,025平方公里,部分地区属于马格达莱纳岛国家公园的范围。坐标:44°35′44″S 73°11′25″W / 4
  • 坏疽坏疽(gangrene、gangrenous necrosis)是指因感染、血栓或其他原因缺乏血液循环造成身体组织坏死和腐烂的症状。 维基共享资源中与坏疽相关的分类