黄金比例

✍ dations ◷ 2025-04-03 17:02:27 #几何术语,无理数,数学常数,黄金比例,初等几何,平面几何,比率,视觉艺术理论


黄金比例,又称黄金分割,是一个数学常数,一般以希腊字母 φ {\displaystyle \varphi } 表示。可以透过以下代数式定义:

这也是黄金比例一名的由来。
黄金比例的准确值为 1 + 5 2 {\displaystyle {\frac {1+{\sqrt {5}}}{2}}} ,所以是无理数,而大约值则为(小数点后20位,OEIS A001622):

应用时一般取1.618,就像圆周率在应用时取3.14159一样。

黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值,而且呈现于不少动物和植物的外观。现今很多工业产品、电子产品、建筑物或艺术品均普遍应用黄金分割,展现其实用性与美观性。

黄金比例是属于数学领域的一个专有名词,但是它最后涵盖的内容不只是有关数学领域的研究,根据目前的文献探讨,我们可以说,黄金比例的发现和如何演进至今仍然是一个谜。但有研究指出公元前6世纪古希腊的毕达哥拉斯学派研究过正5边形和正10边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割的一些规则,也发现无理数。他侧重于从数学关系去探讨美的规律,并认为美就是和谐与比例,按照这种比例关系就可以组成美的图案,这其实是一个数字的比例关系,即将一条线分成两部分,较长的一段与较短的一段之比等于全长与较长的一段之比,它们的比例大约是1.618:1,知名的费氏数列也体现了这个数学原则,按此种比例关系组成的任何事物都表现出其内部关系的和谐与均衡。

公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著(即中末比)。

中世纪后,黄金分割被披上神秘的外衣,意大利数学家卢卡·帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家约翰内斯·开普勒称神圣比例为黄金分割。到19世纪黄金分割这一名称才逐渐通行,而证据在于德国数学家马丁·欧姆(英语:Martin Ohm)所写的《基本纯数学》第2版注释中写到有关黄金比例的解释:“人们习惯把按此方式将任一直线分割成两部分的方法,称为黄金分割”。而在1875年出版的《大英百科全书》的第9版中,苏利有提到:“由费区那……提出的有趣、实验性浓厚的想法宣称,‘黄金分割’在视觉比例上具有所谓的优越性。”可见黄金分割在当时已经流行了。20世纪时美国数学家马克·巴尔(英语:Mark Barr)给它个名字叫phi。黄金分割有许多有趣的性质,人类对它的实际应用也很广泛,造就了它今天的名气。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家杰克·基弗(英语:Jack Kiefer (statistician))于1953年首先提出的,70年代在中国推广。

两个数值 a {\displaystyle a} b {\displaystyle b} 构成黄金比例 φ {\displaystyle \varphi } ,如果: a + b a = a b = φ {\displaystyle {\frac {a+b}{a}}={\frac {a}{b}}=\varphi }

一个得出 φ {\displaystyle \varphi } 数值的方法是从左边的分数式入手。经过简化和代入,

于是:

两边乘以 φ {\displaystyle \varphi } 就得到:

即是 φ 2 φ 1 = 0 {\displaystyle {\varphi }^{2}-\varphi -1=0}

找出该方程的正解,

黄金分割奇妙之处,在于其倒数为自身减1,即:1.618...的倒数为 0.618 = 1.618 1 {\displaystyle 0.618\ldots =1.618\ldots -1} ,并时常被称为“黄金比例共轭”。

从上面的 1 + 1 φ = φ {\displaystyle 1+{\frac {1}{\varphi }}=\varphi } 得到:

这个0.618...的数值常用希腊字母 Φ {\displaystyle \Phi } 表示,即:

公式 φ = 1 + 1 φ {\displaystyle \varphi =1+{\frac {1}{\varphi }}} 可以被递归扩展来获得黄金比例的连分数:

而它的倒数是:

平方根表示:

以三角函数的特殊值表示:

即是:

#include <iostream>#include <stdio.h>using namespace std;int main() {  long b, c, d = 0, e = 0, f = 100, i = 0, j, N;  cout << "請輸入黃金分割數位數\n";  cin >> N;  N = N * 3 / 2 + 6;  long* a = new long;  while (i <= N) a = 1;  for (; --i > 0;       i == N - 6 ? printf("\r0.61") : printf("%02ld", e += (d += b / f) / f),       e = d % f, d = b % f, i -= 2)    for (j = i, b = 0; j; b = b / c * (j-- * 2 - 1))      a = (b += a * f) % (c = j * 10);  delete a;  cin.ignore();  cin.ignore();  return 0;}

黄金矩形

鹦鹉螺的内部结构

帕提农神庙

最后的晚餐

联合国总部大楼

向日葵

蝴蝶花纹

贵金属分割即 n + n 2 + 4 2 {\displaystyle {\frac {n+{\sqrt {n^{2}+4}}}{2}}} ,其中 n {\displaystyle n} 为正整数。 n = 1 {\displaystyle n=1} 时为黄金分割( 1 + 5 2 {\displaystyle {\frac {1+{\sqrt {5}}}{2}}} ), n = 2 {\displaystyle n=2} 时为白银分割( 1 + 2 {\displaystyle 1+{\sqrt {2}}} ), n = 3 {\displaystyle n=3} 时为青铜分割( 3 + 13 2 {\displaystyle {\frac {3+{\sqrt {13}}}{2}}} )。用连分数可表示为 n + 1 n + 1 n + 1 n + 1 = {\displaystyle n+{\cfrac {1}{n+{\cfrac {1}{n+{\cfrac {1}{n+{\cfrac {1}{\ddots }}}}}}}}=}

相关

  • 恶性高热恶性高热、致命高热(英语:Malignant hyperthermia (MH))是病人因全身麻醉而导致的严重反应,是因为使用特定全身麻醉药而引发的罕见危及生命病症(英语:life-threatening condition),
  • 劳务派遣人力派遣也可称为人才派遣、劳务派遣、劳动派遣、临时劳动(temporary)、机构劳动(agency work)或租赁劳动(leased work),是一种劳动雇用的方式,意即此类劳工名义上是属于人力
  • 口角炎口角炎(英语:Angular cheilitis or Angular Stomatitis, perlèche),或称烂嘴角,为发生在嘴唇一侧或两侧角落部位的炎症,通常为两侧同时发炎。此症是唇炎(cheilitis)的一种形式,发炎部
  • 吴新涛吴新涛(1939年4月6日-),福建石狮人,中国物理化学家。生于福建石狮。1960年毕业于厦门大学化学系。1966年福州大学物理化学专业研究生毕业。中国科学院福建物质结构研究所研究员、
  • GABA受体γ-氨基丁酸受体(英语:GABA receptor,简称GABA受体)是抑制性神经递质γ-氨基丁酸的受体,主要分为三类:γ-氨基丁酸A受体、γ-氨基丁酸B受体、γ-氨基丁酸C受体。其中A和C受体是离
  • span style=color:white;国府时期/span本文介绍的是中华民国在国民政府时期的历任内阁:以下列出国民政府时期,中华民国政府的历任内阁。-'-南京政府(临)唐绍仪(第1次)陆徵祥(第1次)赵秉钧段祺瑞(临)熊希龄孙宝琦(临)徐世昌(第1
  • 逸度系数逸度(英语:Fugacity)在化学热力学中表示实际气体的有效压力,用 f {\displaystyle f} 表示。它等于相同条件下具有相同化学势的理
  • 请融化我吧2019年9月28日 (2019-09-28)-2019年11月17日 (2019-11-17)《请融化我吧》(韩语:날 녹여주오),为韩国tvN于2019年9月28日起播出的周末连续剧,由《秘密花园》、《绅士的品格》的申
  • 奥斯卡奥斯卡是一个西欧男性名字。最常见的英文拼法为Oscar。奥斯卡在盖尔语支里意思是“爱鹿者”,也是爱尔兰神话的一位人物。在古英语里意思是“神的矛”。在北约音标字母里代表
  • 国家情报协调局菲律宾国家情报调节局菲律宾政府主要情报机构。它负责收集和分析情报,开展公开或隐蔽性活动。1949年成立,实行总干事负责制。其工作格言是:Ang Karunungan ay Kaligtasan