首页 >
生化需氧量
✍ dations ◷ 2025-05-15 07:24:48 #生化需氧量
生化需氧量(Biochemical oxygen demand,简写为BOD),是水体中的好氧微生物在一定温度下将水中有机物分解成无机质,这一特定时间内的氧化过程中所需要的溶解氧量。虽然生化需氧量并非一项精确定量的检测,但是由于其间接反映了水中有机物质的相对含量,故而BOD长期以来作为一项环境监测指标被广泛使用;在水环境模拟中,由于对水中每种化合物分别考虑也并不现实,同样使用BOD来模拟水中有机物的变化。生化需氧量和化学需氧量(COD)的比值能说明水中的难以生化分解的有机物占比,微生物难以分解的有机污染物对环境造成的危害更大。通常认为废水中这一比值大于0.3时适合使用生化处理。在BOD的测量中,通常规定使用20℃、5天的测试条件,并将结果以氧的mg/L表示,记为五日生化需氧量,符号
B
O
D
5
{displaystyle {begin{smallmatrix}BOD_{5}end{smallmatrix}}}
,这一指标系由英国皇家污水处理委员会(英语:Royal Commission on Sewage Disposal)确定。对于一般的生活污水有机废水,硝化过程在5-7天以后才能显著展开,因此不会影响有机物BOD5的测量;对于特殊的有机废水,为了避免硝化过程耗氧所带来的干扰,可以在样本中添加抑制剂。对于生化需氧量的测定,得到普遍认可并主要使用的方法是稀释法。稀释法中,使用氧饱和溶解的水稀释待测水样,之后使用一定量的微生物悬浊液(常用活性污泥)少量固定的接种物质接种,然后测试此时的溶解氧
D
O
1
{displaystyle {begin{smallmatrix}DO_{1}end{smallmatrix}}}
,密封水样。将温度保持在20℃,静置水样于黑暗环境中(以防止光合作用增加样本中溶解氧)。五天后,再测试此时水样的溶解氧
D
O
2
{displaystyle {begin{smallmatrix}DO_{2}end{smallmatrix}}}
。记稀释因子为
F
{displaystyle {begin{smallmatrix}Fend{smallmatrix}}}
,接种液中的生化需氧量为
B
O
D
s
e
e
d
{displaystyle {begin{smallmatrix}BOD_{seed}end{smallmatrix}}}
,于是稀释接种法的计算公式为:B
O
D
5
=
(
D
O
1
−
D
O
2
−
B
O
D
s
e
e
d
)
×
F
{displaystyle BOD_{5}=left(DO_{1}-DO_{2}-BOD_{seed}right)times F}若稀释法过程未经接种,则:
B
O
D
5
=
(
D
O
1
−
D
O
2
)
×
F
{displaystyle BOD_{5}=left(DO_{1}-DO_{2}right)times F}若测试过程未经稀释,则:
B
O
D
5
=
D
O
1
−
D
O
2
{displaystyle BOD_{5}=DO_{1}-DO_{2}}在中国,环境保护部发布了《水质 五日生化需氧量(BOD5)的测定 稀释与接种法》(HJ 505-2009),作为目前的
B
O
D
5
{displaystyle {begin{smallmatrix}BOD_{5}end{smallmatrix}}}
测定标准。为克服稀释法所具有的操作复杂、所需试剂较多、耗时较长、重现性差等缺点,人们还开发出一些其他的改进方法,如测压法、增温法、生物传感器法、活性污泥曝气降解法等,但是它们存在新的缺点,尚不能取代稀释法的地位。测压法:其原理是生化反应产生的二氧化碳被样品瓶中吸收剂吸收,而空气中的氧溶解到水中以补充消耗,从而密闭系统压力降低,根据气压降就可以求出水样中的BOD值。其优点在于操作简单、测定直接且实时,能连续显示结果;但是它并不能减少培养时间。增温法:其原理是按照一定的经验增温培养时间,来提高反应温度,激化微生物活性,加速其分解作用从而达到快速测定。其缺点在于测定的精密度较差,仅适用于特定废水的控制分析。生物传感器法:其原理是在此类传感器中,水样中溶解氧通过固定的微生物膜层扩散到电极上会显示出一定的电流,而发生生化反应后溶解氧大量减少,氧电极电流随之迅速减小,根据这一电流的减小值在事先标定的曲线上可得出
B
O
D
5
{displaystyle {begin{smallmatrix}BOD_{5}end{smallmatrix}}}
。其缺点在于传感器制作困难、生物膜寿命短,测定范围较窄。活性污泥曝气降解法:其原理是利用活性污泥曝气降解水样一段时间,用重铬酸钾测定曝气前后COD,其变化即为总的生化需氧量,之后对照标准测定值即得出
B
O
D
5
{displaystyle {begin{smallmatrix}BOD_{5}end{smallmatrix}}}
。这一方法更适用于BOD和COD比值的测定。
相关
- 汤匙汤匙(tablespoon,简称tbsp,又译餐桌匙),是一种进食用的匙,以及一个容量单位,其最常见的用途为喝汤,因而得名。汤匙有烹调上也是一种容量量度单位。不同国家对汤匙的标准并不一样,但通
- 贝瑞塔皮埃特罗·贝雷塔武器制造厂股份公司(意大利语:Fabbrica d'Armi Pietro Beretta S.P.A.)是意大利主要的枪支制造商,他们的武器都广泛的被全世界的平民、警察与军队所使用。贝雷
- 真核翻译真核翻译(Eukaryotic translation)是信使RNA在真核生物中翻译成蛋白质的生物学过程。 它由四个阶段组成:起始,延伸,终止,和再循环。翻译起始是翻译过程中的第一步,也是最为复杂的
- 戴维·格罗斯戴维·格娄斯(英语:David Jonathan Gross,1941年2月19日-),美国理论物理学家,凯维里理论物理研究所教授。他受业于伯克利加州大学的杰弗里·丘教授。在任教于普林斯顿大学期间,他和
- 分子模型分子建模(英语:Molecular modelling)或称分子模拟,是指利用理论方法与计算技术,模拟出化学分子的外观或性质,属于计算化学与计算生物学领域的研究对象。并且是化学与生物学上,如结
- 亚历山大·涅斯梅亚诺夫亚历山大·尼古拉耶维奇·涅斯梅亚诺夫(俄语:Александр Николаевич Несмеянов,1899年9月9日-1980年1月17日),苏联化学家。苏联科学院院长。英国皇家
- 最大后验概率估计在贝叶斯统计学中,“最大后验概率估计”是后验概率分布的众数。利用最大后验概率估计可以获得对实验数据中无法直接观察到的量的点估计。它与最大似然估计中的经典方法有密切
- 爱尔兰咖啡爱尔兰咖啡(爱尔兰语:Caifé Gaelach,英语:Irish coffee)是一种鸡尾酒,以热咖啡、爱尔兰威士忌、糖混合搅拌而成,最后加上一层奶油,于Joseph Sheridan在1940年代发明。始创的处方并
- 分离压分离压是薄液膜中由于分子作用力产生的额外的压力。分离压的物理定义为是单位面积吉布斯能关于距离的导数。分离压的概念最早由Derjaguin引入。在薄膜蒸发中,分离压的概念得
- 小行星55565700±50 km 940 km小行星55565((55565) 2002 AW197)是外海王星天体(TNO),它在2002年被米高·E·布朗等人发现,被分类为QB1天体。它是矮行星候选者,并且它的位置靠近古柏断崖。由史