弗洛里-哈金斯溶液理论

✍ dations ◷ 2024-12-23 01:33:35 #高分子化学,溶液,热力学自由能,统计力学

弗洛里-哈金斯溶液理论(英语:Flory-Huggins solution theory)是保罗·弗洛里(Paul Flory)和莫里斯·洛伊尔·哈金斯(英语:Maurice Loyal Huggins)提出的一个描述高分子与溶剂混合时体系自由能变化的数学模型。这一模型基于几条简单而理想化的假设,将高分子溶液体系考虑为“似晶格”体系,考虑了高分子和溶剂分子在尺寸上的很大区别对混合熵变的影响和高分子之间与高分子-溶剂之间作用力不同对混合时内能变化的影响。'弗洛里-哈金斯溶液理论具有简洁的形式,能较好地与试验结果吻合。按照该理论,在一定温度下,高分子和溶剂分子混合时的亥姆霍兹自由能变化等于:

等式左边的 Δ F m {\displaystyle \Delta F_{m}} 指的是高分子和溶剂混合后的体系亥姆霍兹自由能和纯组分的亥姆霍兹自由能总和的差值,有的文献或教材则写作吉布斯能的差值。等式右边的摩尔数 n 1 {\displaystyle n_{1}} ϕ 1 {\displaystyle \phi _{1}} 指的是溶剂的摩尔数和体积分数,而 n 2 {\displaystyle n_{2}} ϕ 2 {\displaystyle \phi _{2}} 分别指的是高分子的摩尔数和体积分数,参数 χ {\displaystyle \chi } 是描述高分子和溶剂作用的参数, R {\displaystyle R} 是气体常数, T {\displaystyle T} 是热力学温度。

根据吉布斯能的定义

对于高分子溶液而言,其混合过程中的内能变化 Δ U M {\displaystyle \Delta U_{M}} 和混合熵变 Δ S M {\displaystyle \Delta S_{M}} ,均与理想溶液的有所不同。

可见,适用于理想溶液的公式不足以描述高分子溶液的性质

1930年代末,爱德华·古根海姆(Edward A. Guggenheim)等人开始将溶液考虑成类似晶格的状况。1941年6月,保罗·弗洛里参加了康奈尔大学的一次学术报告会,哈金斯在会上作了关于高分子溶液性质的报告,正在研究非线性分子凝胶点等性质的弗洛里和哈金斯进行了交流,两人建立了终生的友谊。不久之后两人分别发表了文章提出了高分子溶液的“似晶格”模型,这个模型有以下三点假定:

首先计算混合所带来的熵变。根据统计热力学里的玻尔兹曼熵公式

此处的 k {\displaystyle k} 是玻尔兹曼常数, Ω {\displaystyle \Omega } N 1 {\displaystyle N_{1}} 个溶剂分子和 N 2 {\displaystyle N_{2}} 个高分子组成的溶液的微观状态数,等于在 N = N 1 + x N 2 {\displaystyle N=N_{1}+xN_{2}} 个格子里放置 N 1 {\displaystyle N_{1}} 个溶剂分子和 N 2 {\displaystyle N_{2}} 个高分子的排列方法的总数。

假定已经有j个高分子被无规地放进晶格里了,则还剩下(N-xj)个空格,则首先计算第j+1个高分子放入这些空格中的放置方法数目。当该高分子的第一个链段放置进晶格里之后,根据链段分布均匀的假定,其附近的平均空着的晶格数与晶格的配位数Z成正比,还和该格子未被高分子的链段占据的 N x j 1 N {\displaystyle {\frac {N-xj-1}{N}}} 平均概率成正比,所以第二个链段的放置方法为 Z ( N x j 1 ) N {\displaystyle {\frac {Z(N-xj-1)}{N}}} 。通过概率计算,可以得到排列方法的总数 Ω = N ! N 2 ! ( N x N 2 ) ! × ( Z 1 N ) ( x 1 ) N 2 {\displaystyle \Omega ={\frac {N!}{N_{2}!(N-xN_{2})!}}\times \left({\frac {Z-1}{N}}\right)^{(x-1)N_{2}}}

通过玻尔兹曼熵公式和斯特林公式,可以得到:

如用体积分数表示的话

这一等式和理想溶液的混合熵:

形式相似,唯一的区别是用体积分数代替了摩尔分数。由于高分子在溶液中既比同样个数的小分子大很多,所以求得的混合熵远比用摩尔分数求得的要大;而高分子的链段间又彼此连接,起不到x个小分子的作用,所以其混合熵又比 x N 2 {\displaystyle xN_{2}} 个小分子与N个溶剂分子混合时要小。

在高分子的溶液体系中有三种作用,令其中链段与链段的结合能为 w 22 {\displaystyle w_{22}} ,链段与溶剂的结合能为 w 12 {\displaystyle w_{12}} 、溶剂与溶剂之间的结合能为 w 11 {\displaystyle w_{11}} 。则生成一对链段-溶剂时的结合能等于

同样考虑各自被溶剂占据的概率之后,溶液中所有的链段-溶剂作用的总对数为:

这里的 Z {\displaystyle Z} 指的是配位数,即某个晶格附近最近的晶格位置。于是,高分子和溶剂的混合内能变化等于:

高分子和溶液的相互作用参数定义为: χ 12 = ( Z 2 ) Δ w / k T {\displaystyle \chi _{12}=(Z-2)\Delta w/kT\,} ,被称为高分子-溶剂的相互作用参数,简称相互作用参数,这一参数反映了高分子与溶剂混合时发生的自由能变化,且只与溶剂和溶质的自身性质有关,于是内能变化等于

将混合熵变和内能变化的表示式代入亥姆霍兹自由能的定义式,就得到了弗洛里-哈金斯公式

相互作用参数可以通过表征高分子和溶剂作用的溶度参数进行估算

这里的 V s e g {\displaystyle V_{seg}} 是高分子链的一个链段的真实体积,而 δ a {\displaystyle \delta _{a}} δ b {\displaystyle \delta _{b}} 分别指高分子和溶剂的溶度参数。

如需实际测量相互作用参数,则可以借助于蒸气压或渗透压的测量。弗洛里-哈金斯溶液理论给出了混合自由能变和体积分数的关系,溶质和溶剂的化学势变化可通过自由能变求出,而对于稀溶液,溶剂的化学势变化与蒸汽压变化具有以下关系

所以

可以通过高分子的稀溶液的蒸汽压p1和纯溶剂的蒸汽压的测量求得相互作用参数,或通过测量渗透压,通过第二维利系数求得。

弗洛里-哈金斯理论没有考虑高分子链折叠带来的熵,实际上当晶态高分子溶解时,其结晶结构会发生变化;即使是无定形的高分子,分子链的构象也会发生变化,这些变化都会带来附加的熵和能量的变化,而高分子在溶液中的实际分布也并非均一。弗洛里和克雷格鲍姆(W.R.Krigbaum)之后发展了弗洛里-克雷格鲍姆理论,将高分子链段在溶液中的分布描述为高分子质心为中心的正态分布,所得到的模型更接近试验结果

相关

  • 低血糖低血糖(英语:Hypoglycemia、low blood sugar)是指血液中的葡萄糖浓度(血糖),特别是血浆中的,低于正常水平的现象,一般是治疗糖尿病时的并发症,也可能是由多种原因所引起的,并导致一系
  • 1s11蒸气压主条目:氢的同位素氢是一种化学元素,其化学符号为H,原子序为1。氢的原子量为7000100794000000000♠1.00794 u,是元素周期表中最轻的元素。单原子氢(H)是宇宙中最常见的
  • AsHsub3/sub砷化氢或胂,是最简单的砷化合物,化学式为AsH3,可燃、能自燃。它是砷和氢的高毒性分子衍生物。尽管它毒性很强,在半导体工业中仍广泛使用,也可用于合成各种有机砷化合物。标准状态
  • 约翰·东布罗夫斯基·罗伯茨Roger Adams Award in Organic Chemistry (1967) 普里斯特利奖章 (1987) 韦尔奇奖 (1990)约翰·东布罗夫斯基·罗伯茨(英语:John Dombrowski Roberts,1918年6月8日-2016年10月29
  • MUC13黏液素(英语:Mucins,或简称黏素)是一类高分子量蛋白家族,且高度糖基化(属于糖缀合物(英语:glycoconjugate)),在大部分后生动物的上皮组织中都有表达。黏液素的特色是它可以构成胶状物;因
  • 曹植曹植(192年-232年12月27日),字子建,沛国谯县(今安徽亳州)人,曹操第四子,卞氏嫡出之第三子,三国时期曹魏的著名诗人。“才高八斗”(“八斗之才”)、“七步成诗”等词之语源。其诗歌对后世
  • 康多莉扎·赖斯康多莉扎·“康迪”·赖斯(英语:Condoleezza "Condi" Rice,1954年11月14日-),美国政治家,前美国国务院国务卿。生于美国亚拉巴马州伯明翰,她是美国历史上就任此职的第一位女性非裔美
  • 椭圆曲线在数学上,椭圆曲线(英语:Elliptic curve,缩写为EC)为一平面代数曲线,由如下形式的方程定义且满足其是无奇点的;亦即,其图形没有尖点或自相交。(当系数域的特征为2或3时,上面的方程不
  • 翁源县翁源县是中国广东省韶关市下辖的一个县,位于韶关市东南部,因其处于北江支流翁江之源而得名。东与连平县相连,南与新丰县毗邻,西与英德市、曲江区交界,北与始兴县、江西省接壤。公
  • 东营区东营区是山东省东营市下辖的一个市辖区。东营市的中心城区,全市政治、经济、文化中心。面积1155平方千米,人口57万。邮政编码257029。下辖6个街道、4个镇、201个村民委员会:201