弗洛里-哈金斯溶液理论

✍ dations ◷ 2025-06-28 19:11:25 #高分子化学,溶液,热力学自由能,统计力学

弗洛里-哈金斯溶液理论(英语:Flory-Huggins solution theory)是保罗·弗洛里(Paul Flory)和莫里斯·洛伊尔·哈金斯(英语:Maurice Loyal Huggins)提出的一个描述高分子与溶剂混合时体系自由能变化的数学模型。这一模型基于几条简单而理想化的假设,将高分子溶液体系考虑为“似晶格”体系,考虑了高分子和溶剂分子在尺寸上的很大区别对混合熵变的影响和高分子之间与高分子-溶剂之间作用力不同对混合时内能变化的影响。'弗洛里-哈金斯溶液理论具有简洁的形式,能较好地与试验结果吻合。按照该理论,在一定温度下,高分子和溶剂分子混合时的亥姆霍兹自由能变化等于:

等式左边的 Δ F m {\displaystyle \Delta F_{m}} 指的是高分子和溶剂混合后的体系亥姆霍兹自由能和纯组分的亥姆霍兹自由能总和的差值,有的文献或教材则写作吉布斯能的差值。等式右边的摩尔数 n 1 {\displaystyle n_{1}} ϕ 1 {\displaystyle \phi _{1}} 指的是溶剂的摩尔数和体积分数,而 n 2 {\displaystyle n_{2}} ϕ 2 {\displaystyle \phi _{2}} 分别指的是高分子的摩尔数和体积分数,参数 χ {\displaystyle \chi } 是描述高分子和溶剂作用的参数, R {\displaystyle R} 是气体常数, T {\displaystyle T} 是热力学温度。

根据吉布斯能的定义

对于高分子溶液而言,其混合过程中的内能变化 Δ U M {\displaystyle \Delta U_{M}} 和混合熵变 Δ S M {\displaystyle \Delta S_{M}} ,均与理想溶液的有所不同。

可见,适用于理想溶液的公式不足以描述高分子溶液的性质

1930年代末,爱德华·古根海姆(Edward A. Guggenheim)等人开始将溶液考虑成类似晶格的状况。1941年6月,保罗·弗洛里参加了康奈尔大学的一次学术报告会,哈金斯在会上作了关于高分子溶液性质的报告,正在研究非线性分子凝胶点等性质的弗洛里和哈金斯进行了交流,两人建立了终生的友谊。不久之后两人分别发表了文章提出了高分子溶液的“似晶格”模型,这个模型有以下三点假定:

首先计算混合所带来的熵变。根据统计热力学里的玻尔兹曼熵公式

此处的 k {\displaystyle k} 是玻尔兹曼常数, Ω {\displaystyle \Omega } N 1 {\displaystyle N_{1}} 个溶剂分子和 N 2 {\displaystyle N_{2}} 个高分子组成的溶液的微观状态数,等于在 N = N 1 + x N 2 {\displaystyle N=N_{1}+xN_{2}} 个格子里放置 N 1 {\displaystyle N_{1}} 个溶剂分子和 N 2 {\displaystyle N_{2}} 个高分子的排列方法的总数。

假定已经有j个高分子被无规地放进晶格里了,则还剩下(N-xj)个空格,则首先计算第j+1个高分子放入这些空格中的放置方法数目。当该高分子的第一个链段放置进晶格里之后,根据链段分布均匀的假定,其附近的平均空着的晶格数与晶格的配位数Z成正比,还和该格子未被高分子的链段占据的 N x j 1 N {\displaystyle {\frac {N-xj-1}{N}}} 平均概率成正比,所以第二个链段的放置方法为 Z ( N x j 1 ) N {\displaystyle {\frac {Z(N-xj-1)}{N}}} 。通过概率计算,可以得到排列方法的总数 Ω = N ! N 2 ! ( N x N 2 ) ! × ( Z 1 N ) ( x 1 ) N 2 {\displaystyle \Omega ={\frac {N!}{N_{2}!(N-xN_{2})!}}\times \left({\frac {Z-1}{N}}\right)^{(x-1)N_{2}}}

通过玻尔兹曼熵公式和斯特林公式,可以得到:

如用体积分数表示的话

这一等式和理想溶液的混合熵:

形式相似,唯一的区别是用体积分数代替了摩尔分数。由于高分子在溶液中既比同样个数的小分子大很多,所以求得的混合熵远比用摩尔分数求得的要大;而高分子的链段间又彼此连接,起不到x个小分子的作用,所以其混合熵又比 x N 2 {\displaystyle xN_{2}} 个小分子与N个溶剂分子混合时要小。

在高分子的溶液体系中有三种作用,令其中链段与链段的结合能为 w 22 {\displaystyle w_{22}} ,链段与溶剂的结合能为 w 12 {\displaystyle w_{12}} 、溶剂与溶剂之间的结合能为 w 11 {\displaystyle w_{11}} 。则生成一对链段-溶剂时的结合能等于

同样考虑各自被溶剂占据的概率之后,溶液中所有的链段-溶剂作用的总对数为:

这里的 Z {\displaystyle Z} 指的是配位数,即某个晶格附近最近的晶格位置。于是,高分子和溶剂的混合内能变化等于:

高分子和溶液的相互作用参数定义为: χ 12 = ( Z 2 ) Δ w / k T {\displaystyle \chi _{12}=(Z-2)\Delta w/kT\,} ,被称为高分子-溶剂的相互作用参数,简称相互作用参数,这一参数反映了高分子与溶剂混合时发生的自由能变化,且只与溶剂和溶质的自身性质有关,于是内能变化等于

将混合熵变和内能变化的表示式代入亥姆霍兹自由能的定义式,就得到了弗洛里-哈金斯公式

相互作用参数可以通过表征高分子和溶剂作用的溶度参数进行估算

这里的 V s e g {\displaystyle V_{seg}} 是高分子链的一个链段的真实体积,而 δ a {\displaystyle \delta _{a}} δ b {\displaystyle \delta _{b}} 分别指高分子和溶剂的溶度参数。

如需实际测量相互作用参数,则可以借助于蒸气压或渗透压的测量。弗洛里-哈金斯溶液理论给出了混合自由能变和体积分数的关系,溶质和溶剂的化学势变化可通过自由能变求出,而对于稀溶液,溶剂的化学势变化与蒸汽压变化具有以下关系

所以

可以通过高分子的稀溶液的蒸汽压p1和纯溶剂的蒸汽压的测量求得相互作用参数,或通过测量渗透压,通过第二维利系数求得。

弗洛里-哈金斯理论没有考虑高分子链折叠带来的熵,实际上当晶态高分子溶解时,其结晶结构会发生变化;即使是无定形的高分子,分子链的构象也会发生变化,这些变化都会带来附加的熵和能量的变化,而高分子在溶液中的实际分布也并非均一。弗洛里和克雷格鲍姆(W.R.Krigbaum)之后发展了弗洛里-克雷格鲍姆理论,将高分子链段在溶液中的分布描述为高分子质心为中心的正态分布,所得到的模型更接近试验结果

相关

  • 钠离子电池钠离子电池(Sodium-ion battery),是一种充电电池,主要依靠钠离子在正极和负极之间移动来工作,与锂离子电池相似。钠离子电池使用的电极材料主要是钠盐,相较于锂盐而言储量更丰富,价
  • 品牌产品 · 定价 · 分销 服务 · 零售 · 宣传 品牌管理 · 大客户营销 营销道德 · 营销效果 营销调查 · 市场调查 市场划分 · 营销战略 市场优势 · 操
  • 卡尔森阿尔维德·卡尔森(瑞典语:Arvid Carlsson,1923年1月25日-2018年6月29日),瑞典科学家。他最著名的成就是对神经递质多巴胺的研究以及该物质在帕金森氏症中的作用,他也因此成为2000年
  • 恩达拉坦多恩达拉坦多是安哥拉西北部的城镇,也是北广萨省的首府,海拔高度670米,每年平均降雨量1,213毫米,雨量主要集中在3月和4月。1970年人口7,342,2010年人口增加至46,606。坐标:9°18′S
  • 台28线台28线(湖内桥-茂林),为联络高雄北海岸与高雄山区的一条省道。此外,路线其中一段是贯穿旗山与六龟等二区,为当地重要的交通道路,使该路段亦有着俗称“旗六公路”。部分路段从县道18
  • 1771年兹姆里·利姆授职仪式壁画,从前1775年到前1760年创作。现在巴黎卢浮宫博物馆。
  • 原水交社宿舍群暨文化景观水交社是位于台湾台南市南区的地名,得名自日治时期在此设立的“水交社”(日本海军将官的亲睦团体),而与“水交社”一同设立的还有海军航空队宿舍,水交社地名主要指的即宿舍区一带
  • 电感元件电感器(英语:inductor)是一种电路元件,会因为通过的电流的改变而产生电动势,从而抵抗电流的改变。这属性称为电感。电感元件有许多种形式,依据外观与功用的不同,而会有不同的称呼。
  • 氯酰氟氯酰氟是一种无机化合物,化学式为ClO2F。它是氟化氯与含氧化合物反应产生的常见副产物。它是氯酸的酰氟。ClO2F最早由Schmitz和Schumacheb于1942年报道,他们通过二氧化氯的氟
  • 恋玩偶癖恋玩偶癖(Doll fetishism)是指一种对玩偶的恋物癖,会被玩偶或是类似玩偶,有人形的物品吸引。恋玩偶癖可能包括和玩偶的性接触、幻想和会动或不会动玩偶的性接触、幻想玩偶之间的