除以三

✍ dations ◷ 2025-11-17 12:14:57 #除以三

在数学中,除以三或三等分是指将一数学物件分割成3个相等的数学物件的操作。最知名的三等分问题为角的三等分问题,该问题已被证明单纯用尺规作图无法达成,而其他数学物件的三等分(如三等分线段)都可以轻易用尺规作图完成而角的三等份则无法。

在数论中,除以三或将一数平分为三等分即为被除数的除数(分母)是三、或乘以三分之一的动作,同时也可以表示分母为3的分数。一般会针对除以三的一些性质进行探讨,例如除以三的整除性,其可以透过数字根来检查。

一般二进制电脑要计算除以三仍然可以有比一般除法快的特殊操作,但没有除以二那么简单,其做法为将二进制以两位为单位位移,并且使位移覆盖所有位置后加总其值,例如32为元整数要位移15次,每次位移2位,并且将这16个位移的结果加总,取前30位为商。

然而,在三进制电脑中,除以三可以透过类似除以二的位元平移法来简化。

将一个线段三等份仅需要在线段的其中之一端点作一射线,并从端点出发在射线上依序作出3个等距离的点,并将第三个点线段另一端点连线,并作平行于此线过射线上另外两点的直线,该两条直线与欲三等分的线段交于两点,则这两点则为欲三等分的线段之三等分点。简而言之,即将已知长度线段延长三倍获得一个已知的三等分线段后投影回欲三等分的线段即可完成线段的三等分。更具体的作法是已知线段AB:

将一矩形三等份可以透过将对角线与由某边上垂直平分线平分矩形为两个矩形的两个对角线的两交点平行于前述垂直平分线的直线将矩形分成三等分。具体作法是有一个矩形ABCD:

三等分角是古希腊平面几何里尺规作图领域中的著名问题,与化圆为方及倍立方问题并列为尺规作图三大难题。尺规作图是古希腊人的数学研究课题之一,是对具体的直尺和圆规画图可能性的抽象化,研究是否能用规定的作图法在有限步内达到给定的目标。三等分角问题的内容是:“能否仅用尺规作图法将任意角度三等分?”

三等分角问题提出后,在漫长的两千余年中,曾有众多的尝试,但没有人能够给出严格的答案 。随着十九世纪群论和域论的发展,法国数学家皮埃尔·汪策尔(英语:Pierre Wantzel)首先利用伽罗瓦理论证明,这个问题的答案是否定的:不存在仅用尺规作图法将任意角度三等分的通法。具体来说,汪策尔研究了给定单位长度后,能够用尺规作图法所能达到的长度值。所有能够经由尺规作图达到的长度值被称为规矩数,而汪策尔证明了,如果能够三等分任意角度,那么就能做出不属于规矩数的长度,从而反证出通过尺规三等分任意角是不可能的。

如果不将手段局限在尺规作图法中,放宽限制或借助更多的工具的话,三等分任意角是可能的。然而,作为数学问题本身,由于三等分角问题表述简单,而证明困难,并用到了高等的数学方法,在已证明三等分角问题不可能之后后,仍然有许多人尝试给出肯定的证明。

相关

  • 历史语言学历史语言学(英语:historical linguistics),亦称越时语言学或历时语言学(diachronic linguistics)、演化语言学,是由弗迪南·德·索绪尔创立的一门研究语言变化的学科,主要研究语言在
  • 5-HT2B受體n/an/an/an/an/an/an/an/an/an/a5-羟色胺受体2B或血清素受体2B (英语:5-Hydroxytryptamine receptor 2B (5-HT2B)或serotonin receptor 2B) 是在人类中由基因编码的蛋白质。
  • 赵避尘赵避尘,亦称千峯老人。道号顺一子。北平昌平县阳坊镇人。自幼好道,遍访明师数十年,与光绪二十一年三月十三日在金山寺求拜了空、了然为师。著有《性命法诀明指》。 参考文献:《
  • 道格拉斯·亚当斯道格拉斯·诺耶尔·亚当斯(Douglas Noël Adams,1952年3月11日-2001年5月11日)是一位英国广播剧作家、和音乐家,尤其以《银河系漫游指南》系列作品出名。这部作品以广播剧起家,后
  • 卡尔·拉森卡尔·拉森(Carl Larsson;1853年5月28日-1919年1月22日)是一位相当知名的瑞典水彩画家,插画家,油画家,壁画家和室内设计师,以水彩画闻名。他的名字有时也做Karl Larsson。中文名字有
  • 乌尔米拉·马通卡乌尔米拉·马通卡(英语:Urmila Matondkar,1974年2月4日-)是印度电影女演员。她主要出现在宝莱坞电影,作品多是惊悚片。1984年出道,马通卡被视为印度电影界的性感象征之一。她最为人
  • 马重雍马重雍(1903年-1990年),又名马殿武,男,回族,甘肃张家川人,中华人民共和国伊斯兰教人物,哲赫忍耶北门派主持人,曾任甘肃省政协副主席,中国伊斯兰教协会常务委员。
  • 张金麟张金麟(1936年10月16日-),河北滦南人,船舶总体和动力专家,中国工程院院士,中船重工第七一九研究所工程总设计师。
  • 乌古论元妃 (金太祖)元妃乌古论氏(?-?),中国金朝开国皇帝完颜阿骨打的妃嫔。元妃乌古论氏,家住的部落在图们江、绥芬河与珲春河 汇流之地的乌古论部。 她嫁给了完颜部的首领完颜阿骨打。 生梁王完颜宗弼(兀术,1148年去世)、卫王完颜宗强(阿鲁保,1142年去世)和蜀王 完颜宗敏(阿鲁补,1150年去世)。 1115年,完颜阿骨打建立金朝时,封乌古论氏为元妃。
  • 恋爱回旋恋爱回旋(日语:ミックス。/Mix)是东宝和富士电视台制作的电影,2017年10月21日在日本上映,导演石川淳一,编剧古泽良太,由新垣结衣和瑛太双主演;该片在日本票房达14.9亿日圆。桌球女神童‧富田多满子,从小就接受母亲严格的桌球训练,让她因此在母亲去世后就直接放弃桌球并过着普通的人生,但后来却因为身为桌球选手的男友被人横刀夺爱大受打击而辞职并回到家乡,但之后为了保住母亲创立的“阿花桌球教室”,也为了要向前男友复仇,于是重拾球拍,并与退役的拳击手‧萩原久组成男女搭档,一起参加全国桌球大赛神奈川县预赛。阿