经典场论

✍ dations ◷ 2025-11-25 21:58:02 #经典场论

经典场论是描述物理场和物质相互作用的研究的物理理论。

一个物理场可以视为在空间和时间的某一点赋予一个物理量(通常是以一种连续的方式)。例如,在气象预报中,某一天一个国家的风速可以用在空间的每一点赋予一个向量来表述(通过移动代表该日的风速的箭头)。经典场论一词通常是指表述两类基本自然力的物理理论:电磁力和重力。

这些场的表述在相对论之前就给出了,在相对论之下作了相应的改动。因此,经典理论可以归类为和的。

某些最简单的物理场是向量力场。历史上,第一次认真考虑了场的是法拉第表述电场的电场线。然后重力场采用了相同的表述方式。

描述重力的经典场论是万有引力,其中重力是两个物质之间的相互作用。

一个具有重力质量 m {displaystyle m} 的粒子,在重力场中受到一个力 F {displaystyle F} 。我们可以定义重力场 g = F m {displaystyle {vec {g}}={frac {vec {F}}{m}}} 。 我们要求探测质量 m {displaystyle m} 小到它的出现不扰动重力场。牛顿引力定律说两个相隔距离 r {displaystyle r} 的粒子,受到如下的力的作用

应用牛顿第二定律(对于常数惯性物质) F = m a {displaystyle {vec {F}}=m{vec {a}}} ,而观察惯性质量和引力质量的实验观察是相等的,并且达到了空前的精度。这可以导出重力场 g {displaystyle g} 的定义

一个带电测试粒子,电荷 q {displaystyle q} ,受到一个力 F {displaystyle F} ,完全基于它的电荷。我们可以类似地表述电场 E {displaystyle E} ,使得 F = q E {displaystyle {vec {F}}=q{vec {E}}} 。利用这个和库仑定律,我们定义单个电荷粒子产生的电场是

经典场论的现代表述通常要求洛伦兹共变性,因为这现在被认为是自然的基本原理。一个场论倾向于在数学上用拉格朗日量来表达。这是一个函数,用于作用原理,并给出场方程和一个该理论的守恒定律。

我们的单位全部采用c=1。

我们有一个场张量(可以是任意阶的张量),为简单起见,我们将采用一个标量, ϕ {displaystyle phi } 。我们从这个量和它的导数构造一个标量,称为拉格朗日量密度 L ( ϕ , ϕ , ϕ , . . . , x ) . {displaystyle {mathcal {L}}(phi ,partial phi ,partial partial phi ,...,x).}

然后我们通过在时空积分从这个密度构造泛函作用:

然后通过施行最小作用量原理我们得到欧拉-拉格朗日方程

下面给出两个最著名的洛伦兹协变经典场论。

历史上,第一个(经典)场论是(分别)表述电场和磁场的。在大量试验之后,这两个场被发现是相关的,或者说,事实上,它们是同一个场的不同方面:这个场就是电磁场。麦克斯韦的电磁场理论描述了电磁场和带电物体的相互作用。这个场论的第一个表述采用向量场来描述电和磁场。随着狭义相对论的发展,一个更好(而且更符合力学)的表述采用了张量场。这个表述采用一个表示两个场的张量而不是两个向量场分别表述电场和磁场。

我们有电磁四维势, A a = ( ϕ , A ) {displaystyle A_{a}=left(-phi ,{vec {A}}right)} ,和四维电流密度 j a = ( ρ , j ) {displaystyle j_{a}=left(-rho ,{vec {j}}right)} 。每一点的电磁场可以用反对称(0,2)-阶电磁场张量(法拉第2-形式)表述

要得到场的动力学,我们要尝试从这个场构造一个标量。在真空中,我们有 L = 1 4 μ 0 F a b F a b . {displaystyle {mathcal {L}}={frac {-1}{4mu _{0}}}F^{ab}F_{ab}.} 我们可以利用规范场论得到相互作用项,而它给出

上式和欧拉-拉格朗日方程一起,给出所需的结果,因为E-L方程给出

在一些简单的代数运算之后,这给出

于是得到一个向量方程,也就是真空麦克斯韦方程组。另外两个可以从F是A的四维旋量这个事实得到:

其中逗号表示偏微分。

牛顿重力被发现和狭义相对论不一致后,爱因斯坦给出了引力的新理论称为广义相对论。这将引力作为由质量引起的几何现象('弯曲时空')表述,而重力场是用一个称为度量张量的张量场来表示。爱因斯坦场方程描述了这个曲率如何引入。这个场方程可以用爱因斯坦-希尔伯特作用量导出。拉格朗日量

其中 R = R a b g a b {displaystyle R,=R_{ab}g^{ab}} 是里奇标量,用里奇张量 R a b {displaystyle ,R_{ab}} 给出,而度量张量 g a b {displaystyle ,g_{ab}} ,将给出真空爱因斯坦场方程:

其中 G a b = R a b R 2 g a b {displaystyle G_{ab},=R_{ab}-{frac {R}{2}}g_{ab}} 是爱因斯坦张量。

相关

  • Caledonian Orogeny喀里多尼亚造山运动(Caledonian orogeny)是一个在不列颠群岛、斯堪的纳维亚山脉、斯瓦尔巴群岛、东格陵兰和部分中欧、北欧地区岩层中纪录的造山运动。喀里多尼亚造山运动相关
  • span class=nowrapThsub3/sub(POsub4/sub)sub&g磷酸钍是一种无机化合物,化学式为Th3(PO4)4,有放射性。磷酸钍存在无水物和多种水合物,它们都难溶于水。磷酸钍的碱式盐和酸式盐也是存在的。磷酸钍的水合物可以由可溶性钍化合
  • 二酰甘油二酸甘油酯(英语:diacylglycerol,或称为甘油二酯,英语:diglyceride,二酰基甘油,缩写DAG)是一类由两个脂肪酸链和一个甘油分子通过酯键形成的甘油酯。二酸甘油酯有两种类型:1,2-二酸甘
  • 吉恩·路易斯·卡巴尼斯吉恩·路易斯·卡巴尼斯(德语:Jean Louis Cabanis,1816年3月8日-1906年2月20日),德国著名鸟类研究学家。卡巴尼斯出生于柏林,1835年至1839年在柏林大学完成学业后,旅行到了北美,携带
  • 葛耀珊葛耀珊先生(1919年11月14日-2002年9月8日),湖北武昌人。国防医学院毕业。中华医学会上海分会内科学会会员。副主任医师。夫人黄佩纯。抗日战争时期,他以平民身份,接受战地救护专业
  • 台南市立后港国民中学台南市立后港国民中学,位于台湾台南市七股区大潭里顶潭93号。1968年成立,名为“台南县立后港国民中学”。2010年12月25日,台南市和台南县合并升格为直辖市,更名为“台南市立后港
  • 蒋昕捷蒋昕捷(20世纪-),《中国青年报》记者,2001年高考因写出满分作文《赤兔之死》而名噪一时,并保送进南京师范大学。毕业后,进入《中国青年报》工作。2010年,于《中国青年报》发表关于地
  • 美国科学研究与开发办公室美国科学研究与开发办公室(英语:Office of Scientific Research and Development,简称OSRD)是美国联邦政府的一个机构,目的是用来在第二次世界大战期间进行军事目的的科学研究。
  • 2022年俄罗斯反战抗议活动 俄罗斯反对派支持: 俄罗斯政府自2022年2月24日起,俄罗斯军事入侵乌克兰的行动引起了俄罗斯国内的反战声浪。抗议遭到了俄罗斯政府的压制,2月24日至3月2日间有超过6500人被捕。在俄乌开战前的几周,就有迹象表明反战情绪在圣彼得堡增长。在2022年2月份,有150名左右俄罗斯人权运动者、作家及社会学者联名向俄罗斯政府发表公开信《如果没有战争多好!》(Лишь бы не было войны!)并在信中谴责RT电视台等俄罗斯国营媒体及政府中的对乌鹰派。自2月24日俄罗斯入侵乌克兰后,俄罗斯公众人物如流
  • 阿维亚解决方案集团阿维亚解决方案集团是一家国际上市航空控股公司,一共拥有20多家子公司。该公司的总部位于立陶宛维尔纽斯。 阿维亚解决方案集团于2011年3月在华沙证券交易所 (WSE)上市,是当年在该证交所上市的第一家外国公司。该公司的股东包括ING Open Pension Fund,Harberin Enterprises,ZIA Valda等。董事会目前有五名成员,包括董事长Gediminas Ziemelis和四名成员,分别为阿维亚解决方案集团首席财务官Aurimas Sanikovas,FL Technics首席