连续q勒让德多项式

✍ dations ◷ 2024-12-24 09:43:32 #正交多项式,特殊函数,Q-模拟

连续勒让德多项式是一个以基本超几何函数定义的正交多项式


P n ( x | q ) = 4 ϕ 3 ( q n q n + 1 q 1 / 4 e i θ a 1 / 4 e i θ q q 1 / 2 q ; q , q ) {\displaystyle P_{n}(x|q)=\;_{4}\phi _{3}\left({\begin{matrix}q^{-n}&q^{n+1}&q^{1/4}e^{i\theta }&a^{1/4}e^{-i\theta }&\\q&-q^{1/2}&-q\end{matrix}};q,q\right)}

令连续q勒让德多项式 q->1 得勒让德多项式

lim q 1 P n ( x | q ) = P n ( x ) {\displaystyle \lim _{q\to 1}P_{n}(x|q)=P_{n}(x)}

lim q 1 P 5 ( x | q ) = P 5 ( x ) {\displaystyle \lim _{q\to 1}P_{5}(x|q)=P_{5}(x)}

由定义, P 5 ( x | q ) = 1 + ( 1 q 5 ) ( 1 q 4 ) ( 1 q 3 ) ( 1 q 6 ) ( 1 q 7 ) ( 1 q 8 ) ( 1 q 4 ( x + i 1 x 2 ) ) ( 1 q 5 / 4 ( x + i 1 x 2 ) ) ( 1 q 9 / 4 ( x + i 1 x 2 ) ) ( 1 q 4 x + i 1 x 2 ) ( 1 q 5 / 4 x + i 1 x 2 ) ( 1 q 9 / 4 x + i 1 x 2 ) q 3 ( 1 q ) 2 ( 1 q 2 ) 2 ( 1 q 3 ) 2 ( 1 + q ) 1 ( 1 + q 3 / 2 ) 1 ( 1 + q 5 / 2 ) 1 ( 1 + q ) 1 ( 1 + q 2 ) 1 ( 1 + q 3 ) 1 + ( 1 q 5 ) ( 1 q 4 ) ( 1 q 3 ) ( 1 q 2 ) ( 1 q 6 ) ( 1 q 7 ) ( 1 q 8 ) ( 1 q 9 ) ( 1 q 4 ( x + i 1 x 2 ) ) ( 1 q 5 / 4 ( x + i 1 x 2 ) ) ( 1 q 9 / 4 ( x + i 1 x 2 ) ) ( 1 q 13 4 ( x + i 1 x 2 ) ) ( 1 q 4 x + i 1 x 2 ) ( 1 q 5 / 4 x + i 1 x 2 ) ( 1 q 9 / 4 x + i 1 x 2 ) ( 1 q 13 4 ( x + i 1 x 2 ) 1 ) q 4 ( 1 q ) 2 ( 1 q 2 ) 2 ( 1 q 3 ) 2 ( 1 q 4 ) 2 ( 1 + q ) 1 ( 1 + q 3 / 2 ) 1 ( 1 + q 5 / 2 ) 1 ( 1 + q 7 / 2 ) 1 ( 1 + q ) 1 ( 1 + q 2 ) 1 ( 1 + q 3 ) 1 ( 1 + q 4 ) 1 + ( 1 q 5 ) ( 1 q 4 ) ( 1 q 3 ) ( 1 q 2 ) ( 1 q 1 ) ( 1 q 6 ) ( 1 q 7 ) ( 1 q 8 ) ( 1 q 9 ) ( 1 q 10 ) ( 1 q 4 ( x + i 1 x 2 ) ) ( 1 q 5 / 4 ( x + i 1 x 2 ) ) ( 1 q 9 / 4 ( x + i 1 x 2 ) ) ( 1 q 13 4 ( x + i 1 x 2 ) ) ( 1 q 17 4 ( x + i 1 x 2 ) ) ( 1 q 4 x + i 1 x 2 ) ( 1 q 5 / 4 x + i 1 x 2 ) ( 1 q 9 / 4 x + i 1 x 2 ) ( 1 q 13 4 ( x + i 1 x 2 ) 1 ) ( 1 q 17 4 ( x + i 1 x 2 ) 1 ) q 5 ( 1 q ) 2 ( 1 q 2 ) 2 ( 1