正实函数

✍ dations ◷ 2025-07-01 09:01:39 #复分析,电子工程,各类函数

正实函数(Positive-real functions)的缩写是PR函数或是PRF,是在电路分析中会出现的一种数学函数。正实函数是复数函数(),其变数也是复数。有理函数若在复平面的右半边都有正的实部,且可解析,在实轴上都为实数,就是正实函数。

其定义可以表示为下式:

在电路分析中()表示阻抗,而为S平面变数,也常用其实部及虚部表示:

则正实函数的定义会改为下式:

正实函数在电路分析的重要性在于正实函数的条件也就是电路可实现性的条件。()可实现为单埠(英语:one-port)有理阻抗当且仅当其符合正实函数的条件。此情形下的可实现表示可以用有限个分立理想的被动线性元件(以电路来说就是电阻器、电感元件、电容器)来实现。

“正实函数”最早是由Otto Brune(英语:Otto Brune)所定义,描述符合以下条件的函数() :

许多作者严格依照上述定义,包括明确要求是有理函数。不过Cauer之前就有提出类似,但要求较宽的条件,也有些作者将“正实函数”的定义认为是Cauer提出的这一种,其他作者则认为Cauer的定义是基本定义的扩展版本。

正实函数的条件最早是由Wilhelm Cauer(英语:Wilhelm Cauer)(1926)提出,他确定了这些是必要条件。Otto Brune(英语:Otto Brune)(1931)开始使用“正实”(positive-real)一词,并且证明是可实现的充份条件及必要条件。

正实函数有许多的扩展版本,希望用导抗函数来处理更大范围的被动线性电路。

若是由包括无限个数的元件形成的电路(例如半无限阶的阶梯网络(英语:Ladder_network)),其阻抗()不一定会是的有限函数,而在负的实轴也会有分支点(英语:branch points)。为了正实函数的定义可以适应这类的函数,需要放宽正实函数的要求,从所有的实数下,函数都要是实数,变成只要在正实数下,函数都要是实数即可。可能是无理函数的()是正实函数若且唯且

有些作者由这个较宽的定义开始,将有理函数的情形视为特例。

超过一个埠(英语:Port (circuit theory))的线性电路可以用阻抗参数或导纳参数来描述。透过延伸到矩阵函数的正实函数定义,可以区分那些是可以由被动元件实现的电路。矩阵值函数(可能是无理函数)()是正实函数的充份必要条件是

相关

  • 健康信息学人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学医学信息学,或称卫生信息学或医学资讯
  • A12A·B·C·D·G·H·QI·J·L·M·N·P·R·S·VATC代码A12(矿物质补充剂)是解剖学治疗学及化学分类系统的一个药物分组,这是由世界卫生组织药物统计方法整合中心(The WHO Collab
  • .mw-parser-output ruby.zy{text-align:justify;text-justify:none}.mw-parser-output ruby.zy>rp{user-select:none}.mw-parser-output ruby.zy>rt{font-feature-settings:
  • 紧急地震速报紧急地震速报(日语:緊急地震速報,英语:Earthquake Early Warning,缩写:EEW)是日本在探测到地震后发布的一种警报,以日本气象厅为中心进行发布。2004年开始试验运行,2007年10月1日正式
  • 木香木香花(学名:Rosa banksiae),为蔷薇科下的一个植物物种。木香的药用部分表面黄棕色或灰褐色,种类很多,有云木香和川木香,云木香生产于中国云南丽江地区,川木香主产于四川安县,另有广
  • 中亚述帝国亚述(帝国亚拉姆语:ܐܬܘܪ‎)是兴起于美索不达米亚(即两河流域,今伊拉克境内幼发拉底河和底格里斯河一带)的国家,使用的语言有阿拉米语,阿卡德语等。公元前8世纪末,亚述逐步强大,先
  • 奥萨玛·本拉登苏联-阿富汗战争 反恐战争奥萨马·本·穆罕默德·本·阿瓦德·本·拉登(阿拉伯语:أسامة بن محمد بن عوض بن لادن‎,拉丁转写:Usāmah bin Muḥammad bin A
  • 斯卡梅尼亚斯卡梅尼亚县(Skamania County, Washington)是美国华盛顿州西南部的一个县,南隔哥伦比亚河与俄勒冈州相望。面积4,361平方公里。根据美国2000年人口普查,共有人口9,872人。县治
  • 涩谷路口坐标:35°39′34″N 139°42′02″E / 35.6595°N 139.70055°E / 35.6595; 139.70055涩谷路口,全称涩谷全向交叉路口(日语:渋谷スクランブル交差点/しぶやスクランブルこうさて
  • 玛格丽特·布朗玛格丽特·布朗(英语:Margaret Brown,1867年7月18日 - 1932年10月26日),死后称为“永不沉没的莫莉·布朗”(英语:The Unsinkable Molly Brown),是一位美国社交名媛、慈善家和活动家。