初等群论

✍ dations ◷ 2025-07-02 11:06:47 #群论

其他有限群
对称群,
二面体群,
无限群
整数, Z
模群, PSL(2,Z) 和 SL(2,Z)

G2 F4E6 E7E8
劳仑兹群
庞加莱群

环路群
量子群
O(∞) SU(∞) Sp(∞)

在数学中,群 <,*> 定义为集合 和叫做“乘积”并指示为中缀 "*" 的 上的二元运算。乘积服从下列规则(也叫做公理)。设 , 和 是 的任意元素。则:

阿贝尔群还服从额外的规则:

封闭性是二元运算定义的一部分,因此 A1 经常省略。

= {1,-1} 是乘法下的一个群,因为对于所有 中的元素 , , :

整数集 Z 和实数集 R 是在加法 '+' 下的群,对于所有 Z 或者 R 中的元素 , 和 :

实数集 R 不是乘法 '*' 下的群。对于所有 R 中的 , 和 :

实数集去除 0 即 R# 是在乘法 '*' 下的群。

A3 和 A4 可以被替代为:

还可以替代为:

这些看起来更弱的公理对天然的蕴含于 A3 和 A4 中。我们现在证明逆过来也是真的。

定理: A1 和 A2 ,A3’ 和 A4’ 蕴含 A3 和 A4。

。假设给出了左单位元 和 中的 ,根据 A4’存在一个 使得 * = 。

我们欲证明的是 * = 。根据 A4’存在 中的一个 有着:

所以:

这确立了 A4。

这确立了 A3。

定理: A1 和 A2,A3’’和 A4’’蕴含 A3 和 A4。

。类似上述。

定理 1.4: 群 <,*> 的单位元是唯一的。

: 假设 和 是 的两个单位元。则

在讨论和比较不同的群的时候, 指示特定群 <,*> 的唯一单位元。

定理 1.5: <,*> 中每个元素的逆元是唯一的。

: 假设 和 是 的元素 的两个逆元。则

没有歧义性的,对于所有 中的,我们指示 的唯一逆元为  -1。

定理 1.3: 对于所有 中元素 ,,存在唯一的 中的 使得 * = 。

。的确存在至少一个这种 ,因为如果我们设 =  -1*,则 在 中(通过 A1,闭包)并且:

为了证明这是唯一性的,如果 * = ,则

类似的,对于所有 中的 ,,存在唯一的一个 中的 使得 * = 。

定理 1.6: 对于所有群 中的元素 ,( -1) -1 = 。

。 -1* =  -1*( -1) -1=。(A4)

由定理 1.5知定理1.6成立。

定理 1.7: 对于所有群 中元素 ,,(*) -1 =  -1* -1。

。(*)*( -1* -1) = *(* -1)* -1 = *e* -1 = * -1 = 。结论得出自定理 1.4。

定理 1.8: 对于所有群 中的元素 , 和 ,如果 * = *,则 = ;并且如果 * = *,则 = 。

。如果 * = * 则:

如果 * = * 则

对于 n Z {\displaystyle n\in \mathbb {Z} } ,*> 中的 , n , m Z {\displaystyle n,m\in \mathbb {Z} } 使用了加法符号,我们有:

并且:

群 中的元素 的阶是最小正整数 使得 。有些它写为“o()=”。 可以是无限的。

定理 1.10: 其非平凡元素都是 2 阶的群是阿贝尔群。换句话说,如果所有群 中的元素 都有 *= 成立,则对于所有 中的 ,,* = *。


。设 , 是群 中任何 2 个元素。由 公理 A1 可知 (*) 是群 的元素,所以 (*) 是群 的 2 阶元素

因为群运算 * 是符合交换律的,这个群是阿贝尔群。


。设 , 是群 中任何 2 个元素。通过 A1,* 也是 的成员。使用给定条件,我们知道 (*)*(*) = 。因此:

因为群运算 * 是符合交换律的,这个群是阿贝尔群。

群 的阶,通常指示为 || 或偶尔指示为 o(),在 <,*> 是有限群的情况下是集合 中元素的数目。如果 是无限集合,则群 <,*> 有等于 的势的阶,而且是无限群。

的子集 被称为群 <,*> 的子群,如果使用相同的算子 "*",并限制于子集 内, 满足群公理。因此如果 是 <,*> 的子群,则 <,*> 也是群,并在限制于 内,满足上述定理。子群 的阶是 中元素的数目。

群 的真子群是不同于 的子群。 的非平凡子群(通常)是包含至少一个不是 的元素的 的真子集。

定理 2.1: 如果 是 <,*> 的子群,则 在 中的单位元 同一于 (,*) 中的单位元 。

。如果 在 中,则 * = ;因为 必定也在 中,* = ;所以通过定理 1.4, = 。

定理 2.2: 如果 是 的子群,并且 是 的元素,则 在 中的逆元同一于 在 中的逆元。

。设 和 是 的元素,使得 * = ;因为 必定也在 中,* -1 = ;所以通过定理 1.5, =  -1。

给定 的子集 ,我们经常想要确定 是否也是 的子群。一个手头的定理对无限群和有限群都是有效的:

定理 2.3: 如果 是 的非空子集,则 是 的子群,当且仅当对于所有 中的 ,,* -1 在 中。

。如果对于所有 中的 , ,* -1 在 中,则

因此,满足了闭包、单位元和逆元公理,而结合律是继承来的,所以 是子群。

反过来说,如果 是 的子群,则它满足群公理。

两个或更多个子群的交集也是子群。

定理 2.4: 群 的子群的任何非空集合的交集是子群。

。设 {} 是 的子群的集合,并设 K = ∩{}。通过定理 2.1, 是所有 的成员;因此 非空。如果 和 是 的两个元素,则对于所有 ,

因此对于 中的所有 , ,* -1 在 中。接着通过前面的定理,=∩{} 是 的子群;并且事实上 是每个 的子群。

给定一个群 <,*>,定义 * 为 ², ***...* ( 次)为 ,并定义 0 = 。类似的,定义  - 为 ( -1)。则我们有:

定理 2.5: 设 是群 (,*) 的元素。则集合 { : 是整数 } 是 的子群。

。这种类型的子群叫做循环子群; 的幂的子群经常写为 <>,并称为 生成 <>。

如果 和 是 的子集,并且 是 的元素,我们写“*”来提及形如 * 的所有元素构成的 的子集,这里的 是 的元素;类似的,我们写“*”来指示形如 * 的元素的集合。我们写 * 表示形如 * 的元素构成的 的子集,这里的 是 的元素而 是 的元素。

如果 是 的子群,则 对于某个 中的 的左陪集是集合 *。右陪集是集合 *。

如果 是 的子群,则下面陈述而不带证明的有用定理对所有陪集都成立:

定义群 的子群 的指标(写为“”)为 在 中不同的左陪集的数目。

从这些定理,我们可以推导出重要的拉格朗日定理,它有关于群的子群的阶:

对于有限群,它可以重申为:

相关

  • 支架支架(Stent)是一种应用于植入型外科手术的管状器具,以治疗体内病变的管道例如血管、食道或输尿管等,恢复管道的正常运输功能。支架一般是永久或半永久植入于患者体内,但亦可以意
  • 能质能量(古希腊语中 ἐνέργεια energeia 意指“活动、操作”)在物理学中是一个间接观察到的物理量。它往往被视为某一个物理系统对其他的物理系统做功的能力。由于功被定
  • 符号上位效应异位(上位)显性是一个基因表现与另外一个或者几个基因改变的现象。决定表现型的基因叫做“上位”,而表型与其它基因改变的基因叫做“下位”。异位(上位)显性与一般的显性不同,一般
  • Cu(HCOO)sub2/sub甲酸铜是铜(II)的甲酸盐,化学式为Cu(HCOO)2。可以以无水物、二水或四水合物的形式存在。也能和吡啶、尿素等形成加合物。甲酸铜可由甲酸和碱式碳酸铜反应得到,产物的形貌、颜
  • 嘉兴府嘉兴府,中国古代的府。南宋庆元元年(1195年),因秀州是宋孝宗出生地,故升秀州置嘉兴府。治所在嘉兴县(今浙江省嘉兴市)。辖区约今浙江省杭州湾以北(海宁市除外)、桐乡以东地区及上海市
  • 黔南民族师范学院黔南民族师范学院黔南民族师范学院,位于贵州省都匀市北开发区,前身为黔南民族师范专科学校,2000年3月28日,经国家教育部教发57号文件批准黔南民族师范专科学校、黔南教育学院、
  • 密码强度密码强度,指一个密码对抗猜测或是暴力破解的有效程度。一般来说,指一个未授权的访问者得到正确密码的平均尝试次数。密码的强度和其长度、复杂度及不可预测度有关。强密码可以
  • 草原马里语草原马里语,又称东马里语,是马里语的方言之一。使用者主要集中在俄罗斯的马里埃尔共和国。草原马里语和山地马里语是马里语的两大方言。草原马里语的使用人口大约有47万人。
  • 后藤春美后藤春美(1960年-)是一名日本历史学家,目前担任东京大学大学院综合文化研究科美洲太平洋地域研究中心教授,专门为日英关系、大英帝国史。出生于东京都,1993年东京大学大学院综合文
  • 梵蒂冈天文台梵蒂冈天文台(Specola Vaticana)是梵蒂冈进行天文研究和教育的机构,总部设在意大利首都罗马近郊的冈多菲堡,也是教宗在夏天的居所,所属的梵蒂冈天文台研究小组则附设在亚利桑那大