反对称性

✍ dations ◷ 2024-12-22 15:55:01 #反对称性
数学上,若对所有的 a 和 b 属于 X,下述语句保持有效,则集合 X 上的二元关系 R 是反对称的:“若 a 关系到 b 且 b 关系到 a,则 a = b。”数学上表示为:严格不等是反对称的;实际上 a < b 且 b < a 是不可能的,因此严格不等的反对称性是一种空虚的真(英语:Vacuous truth)。注意,反对称关系不是对称关系(aRb 得到 bRa)的反义。有些关系既是对称的又是反对称的,比如"等于"(证明:a=b推出b=a;a=b且b=a推出a=b);有些关系既不是对称的也不是反对称的,比如"爱上……"(证明:a爱b不能推出b爱a;a爱b且b爱a不能推出a和b是同一个人);有些关系是对称的但不是反对称的,比如"和…结婚"(证明:a和b结婚推出b和a结婚;a和b结婚且b和a结婚不能推出a和b是同一个人);有些关系不是对称的但是反对称的,比如正整数的"整除"(证明:3整除6不能推出6整除3;a整除b,即b=ma,m为正整数,且b整除a,即a=nb,n为正整数,则b=ma=mnb,则mn=1且m,n为正整数,则m=n=1,即a=b)。满足传递性和自反性的反对称关系称为偏序关系。

相关

  • 水污染控制水污染控制是控制向水体排放污染物的方法,水污染主要有点污染源和面污染源,点污染源有具体的污染源,如工厂的排污管道口,比较容易治理,只要控制污染物排放政策有足够的执法能力,每
  • 凯尔盖朗海台凯尔盖朗海台(Kerguelen Plateau)是一个海底火山大火成岩区,也是一个微大陆。凯尔盖朗海台是位于南印度洋的淹没大陆。它位于澳大利亚西南部约3000公里,大小是日本的近3倍。高
  • 输导组织输导组织和分生组织、基本组织、保护组织同为植物组织。输导组织包括导管、筛管等。促进了运输作用,使高等植物对陆地生活有更强的适应力。
  • Fe(NO)sub4/sub四亚硝基合铁是一种无机配位化合物,化学式为Fe(NO)4,不挥发,反应活性高。四亚硝基合铁可由五羰基铁和一氧化氮在压热釜中加热至45℃反应得到。四亚硝基合铁在空气中易被氧化。
  • 第二共和国法兰西第二共和国,简称第二共和,是1848年11月4日到1852年12月2日间统治法国的共和政体。1848年法国二月革命爆发。二月革命成功后,七月王朝崩溃,资产阶级取得政权,建立了法兰西第
  • 法国24法兰西24、法国24(法语:France 24 / France vingt-quatre, .mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unico
  • 长江br /文明长江文明是长江流域各区域文明的总称,是汉文化的一部分,与黄河文明并列为汉文化的两大源泉。长江文明区域之广、文化遗址数量之多、密度之大,都堪称世界之最,包括有江苏和上海大
  • 阿兹提克阿兹特克,又译阿兹台克、阿兹提克,是存在于14世纪至16世纪的墨西哥古文明,主要分布在墨西哥中部和南部,因阿兹特克人而得名。阿兹特克人包括墨西哥谷地的多个民族,以操纳瓦特尔语
  • 环崇明岛国际公路自行车赛环崇明岛国际公路自行车赛创办自2003年,起初是一项全国性赛事,继而发展为国际赛,2010年被国际自行车联盟定为2.1级的洲际赛。2010年的比赛赛程5天,由两部分组成:5月5-7日的环崇明
  • 非洲猬目 Afrosoricida非洲猬目(Afrosoricida),又名非洲鼩目,是包含了南部非洲的金毛鼹及马达加斯加与非洲的马岛猬的目。一些科学家会使用Tenrecomorpha来表示马岛猬/金毛鼹的分支,但证据显示非洲猬目