凹凸性 (几何)

✍ dations ◷ 2025-09-16 19:32:01 #几何形状

在几何学中,一个几何图形可分为凸或凹的。例如多边形和多面体。其中,凸的多边形称为凸多边形、凹的多边形则可称为凹多边形或非凸多边形,多面体与多胞体亦然。然而在三维或更高维度的空间中,不是凸的几何图形不一定会是凹几何图形,亦可能是星形几何图形,因此在三维或更高维度的空间中较常分为凸与非凸。

凸几何图形是指内部为凸集的几何图形,二维空间中的凸几何图形称为凸多边形、三维空间则称凸多面体。若一多胞形的内部为凸集,则称凸多胞形。

二维空间中的凸几何图形称为凸多边形,简单多边形的下列性质与其凸性等价:

凸几何图形的凸包与其边界相同。

凸多边形示例:正五边形

凸多面体示例:正十二面体

凹几何图形是指内部不是凸集的几何图形,在二维空间中,不是凸集的简单多边形,称为凹多边形(Concave polygon)或凹角。

凹多边形至少存在一个内角大于180度。

在三维空间中,不是凸的几何图形不一定会是凹几何图形,亦可能是星形多面体,因此在三维空间中较常分为凸与非凸。

凹多边形示例

凹多面体示例:凹鹞形柱

环形多面体

如果一个简单多边形的每个内角严格小于180度,是严格凸的;如果每个非相邻顶点间的线段除端点外严格位于多边形的内部,也是严格凸的。

所有非退化三角形都是严格凸的。

星形几何图形是非凸几何图形的一个特例,其并未有一个明确的定义。在二维空间中,称为星形多边形,数学家Branko Grünbaum指出了两种由克普勒提出的定义:一种是具有自相交棱的正星形多边形,且自相交的棱不产生新的顶点,另一种是边可递的简单凹多边形。

星形多边形示例:五角星

星形多面体示例:大十二面体

相关

  • 高功能自闭症高功能自闭症(英语:High-functioning autism,简称HFA),指智商中等或更高患者所患有的自闭症,该类自闭症患者多数具有语言能力,学习能力较佳、自闭倾向较不明显;但语言理解与表达力、
  • 马泰奥·伦齐马泰奥·伦齐 (意大利语:Matteo Renzi,意大利语发音:; 1975年1月11日-),意大利政治人物,第56任意大利总理,2013年12月当选民主党总书记。他曾经在2004年~至2009年任佛罗伦萨省省长,200
  • 恐怖主义恐怖主义在中国不仅局限在西域、局限在特定目标、局限在中小城市,2008年以来,中国的恐怖主义活动出现明显增加。中华人民共和国政府将北京、上海、天津、武汉、广州、沈阳、重
  • 紫罗兰紫罗兰(学名:Matthiola incana),为十字花科紫罗兰属多年生草本植物,多作一二年生草花栽培。原产非洲维基物种中有关紫罗兰的数据
  • 民雄乡#历史民雄乡(台湾话:.mw-parser-output .sans-serif{font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Lato,"Helvetica Neue",Helvetica,Arial,sans-serif} Bîn-
  • 领养的希尔德贝特领养的希尔德贝尔特(拉丁语:Childebertus Adoptivus)是墨洛温王朝的法兰克国王(656年-661年在位)。兰登丕平的孙子、老格里摩尔德的儿子、西吉贝尔特三世的养子。希尔德贝尔特出
  • 电子康普顿波长粒子的康普顿波长(Compton wavelength)λ,其关系式如下:式中的变数符号定义约化康普顿波长 λ
  • 东门街道东门街道是中国广东省深圳市罗湖区下辖的一个街道,地处罗湖区中心位置。总面积2.1平方公里。总人口10余万人,其中常住人口4.3万,暂住人口5.5万。东门街道是深圳市最早的街道办
  • 25美分 (Quarter)四分之一美元(英语:quarter dollar;常缩写为quarter)是现行美国硬币的一种,面值等于四分之一美元,即25美分,于1796年开始正式铸造生产。25美分硬币自1796年正式发行以来,一共有6个主
  • 乌得勒支大学乌得勒支大学(荷兰语:Universiteit Utrecht),荷兰最古老大学之一,也是欧洲规模最大的大学之一。乌得勒支大学坐落在荷兰乌得勒支市,创办于1636年3月26日。2004年入学学生有26,787